IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v209y2024ics0167715224000737.html
   My bibliography  Save this article

A spectral based goodness-of-fit test for stochastic block models

Author

Listed:
  • Wu, Qianyong
  • Hu, Jiang

Abstract

Community detection is a fundamental problem in complex network data analysis. Though many methods have been proposed, most existing methods require the number of communities to be the known parameter, which is not in practice. In this paper, we propose a novel goodness-of-fit test for the stochastic block model. The test statistic is based on the linear spectral of the adjacency matrix. Under the null hypothesis, we prove that the linear spectral statistic converges in distribution to N(0,1). The proof uses some recent results in generalized Wigner matrices to prove the main theorem. Numerical experiments and real world data examples illustrate that our proposed linear spectral statistic has good performance.

Suggested Citation

  • Wu, Qianyong & Hu, Jiang, 2024. "A spectral based goodness-of-fit test for stochastic block models," Statistics & Probability Letters, Elsevier, vol. 209(C).
  • Handle: RePEc:eee:stapro:v:209:y:2024:i:c:s0167715224000737
    DOI: 10.1016/j.spl.2024.110104
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715224000737
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2024.110104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter J. Bickel & Purnamrita Sarkar, 2016. "Hypothesis testing for automated community detection in networks," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 253-273, January.
    2. Ma, Xiaoke & Wang, Bingbo & Yu, Liang, 2018. "Semi-supervised spectral algorithms for community detection in complex networks based on equivalence of clustering methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 786-802.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Xiaoke & Li, Dongyuan & Tan, Shiyin & Huang, Zhihao, 2019. "Detecting evolving communities in dynamic networks using graph regularized evolutionary nonnegative matrix factorization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 530(C), pages 1-1.
    2. Zhang, Zhong-Yuan & Gai, Yujie & Wang, Yu-Fei & Cheng, Hui-Min & Liu, Xin, 2018. "On equivalence of likelihood maximization of stochastic block model and constrained nonnegative matrix factorization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 687-697.
    3. Anirban Dasgupta & Srijan Sengupta, 2022. "Scalable Estimation of Epidemic Thresholds via Node Sampling," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 321-344, June.
    4. Mingao Yuan & Fan Yang & Zuofeng Shang, 2022. "Hypothesis testing in sparse weighted stochastic block model," Statistical Papers, Springer, vol. 63(4), pages 1051-1073, August.
    5. Jianqing Fan & Yingying Fan & Xiao Han & Jinchi Lv, 2022. "SIMPLE: Statistical inference on membership profiles in large networks," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 630-653, April.
    6. Neil Hwang & Jiarui Xu & Shirshendu Chatterjee & Sharmodeep Bhattacharyya, 2022. "The Bethe Hessian and Information Theoretic Approaches for Online Change-Point Detection in Network Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 283-320, June.
    7. Lin, Wei & Li, Min & Zhou, Shuming & Liu, Jiafei & Chen, Gaolin & Zhou, Qianru, 2021. "Phase transition in spectral clustering based on resistance matrix," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    8. Zhang, Yue & Yuan, Mingao, 2020. "Nonreconstruction of high-dimensional stochastic block model with bounded degree," Statistics & Probability Letters, Elsevier, vol. 158(C).
    9. Wang, Tingting & Wang, Zhen, 2024. "A community scale test for node affiliation based on network sampling and wavelet analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).
    10. Mingyang Ren & Sanguo Zhang & Junhui Wang, 2023. "Consistent estimation of the number of communities via regularized network embedding," Biometrics, The International Biometric Society, vol. 79(3), pages 2404-2416, September.
    11. Wu, Qianyong & Hu, Jiang, 2024. "Two-sample test of stochastic block models," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
    12. Watanabe, Chihiro & Suzuki, Taiji, 2021. "Goodness-of-fit test for latent block models," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:209:y:2024:i:c:s0167715224000737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.