IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v72y2010i4p533-544.html
   My bibliography  Save this article

Bayesian pseudo‐empirical‐likelihood intervals for complex surveys

Author

Listed:
  • J. N. K. Rao
  • Changbao Wu

Abstract

Summary. Bayesian methods for inference on finite population means and other parameters by using sample survey data face hurdles in all three phases of the inferential procedure: the formulation of a likelihood function, the choice of a prior distribution and the validity of posterior inferences under the design‐based frequentist framework. In the case of independent and identically distributed observations, the profile empirical likelihood function of the mean and a non‐informative prior on the mean can be used as the basis for inference on the mean and the resulting Bayesian empirical likelihood intervals are also asymptotically valid under the frequentist set‐up. For complex survey data, we show that a pseudo‐empirical‐likelihood approach can be used to construct Bayesian pseudo‐empirical‐likelihood intervals that are asymptotically valid under the design‐based set‐up. The approach proposed compares favourably with a full Bayesian analysis under simple random sampling without replacement. It is also valid under general single‐stage unequal probability sampling designs, unlike a full Bayesian analysis. Moreover, the approach is very flexible in using auxiliary population information and can accommodate two scenarios which are practically important: incorporation of known auxiliary population information for the construction of intervals by using the basic design weights; calculation of intervals by using calibration weights based on known auxiliary population means or totals.

Suggested Citation

  • J. N. K. Rao & Changbao Wu, 2010. "Bayesian pseudo‐empirical‐likelihood intervals for complex surveys," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 533-544, September.
  • Handle: RePEc:bla:jorssb:v:72:y:2010:i:4:p:533-544
    DOI: 10.1111/j.1467-9868.2010.00747.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9868.2010.00747.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9868.2010.00747.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kai-Tai Fang & Rahul Mukerjee, 2006. "Empirical-type likelihoods allowing posterior credible sets with frequentist validity: Higher-order asymptotics," Biometrika, Biometrika Trust, vol. 93(3), pages 723-733, September.
    2. Nicole A. Lazar, 2003. "Bayesian empirical likelihood," Biometrika, Biometrika Trust, vol. 90(2), pages 319-326, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Gunawan & William Griffths & Anatasios Panagiotelis and Duangkamon Chotikapanich, 2017. "Bayesian Weighted Inference from Surveys "Abstract: Data from large surveys are often supplemented with sampling weights that are designed to reflect unequal probabilities of response and selecti," Department of Economics - Working Papers Series 2030, The University of Melbourne.
    2. Siddharta Chib & Minchul Shin & Anna Simoni, 2016. "Bayesian Empirical Likelihood Estimation and Comparison of Moment Condition Models," Working Papers 2016-21, Center for Research in Economics and Statistics.
    3. Matthew R. Williams & Terrance D. Savitsky, 2021. "Uncertainty Estimation for Pseudo‐Bayesian Inference Under Complex Sampling," International Statistical Review, International Statistical Institute, vol. 89(1), pages 72-107, April.
    4. Sanjay Chaudhuri & Malay Ghosh, 2011. "Empirical likelihood for small area estimation," Biometrika, Biometrika Trust, vol. 98(2), pages 473-480.
    5. Bedoui, Adel & Lazar, Nicole A., 2020. "Bayesian empirical likelihood for ridge and lasso regressions," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
    6. Kai Yang & Xue Ding & Xiaohui Yuan, 2022. "Bayesian empirical likelihood inference and order shrinkage for autoregressive models," Statistical Papers, Springer, vol. 63(1), pages 97-121, February.
    7. Ouyang, Jiangrong & Bondell, Howard, 2023. "Bayesian analysis of longitudinal data via empirical likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sanjay Chaudhuri & Debashis Mondal & Teng Yin, 2017. "Hamiltonian Monte Carlo sampling in Bayesian empirical likelihood computation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 293-320, January.
    2. In Chang & Rahul Mukerjee, 2012. "On the approximate frequentist validity of the posterior quantiles of a parametric function: results based on empirical and related likelihoods," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 156-169, March.
    3. Siddharta Chib & Minchul Shin & Anna Simoni, 2016. "Bayesian Empirical Likelihood Estimation and Comparison of Moment Condition Models," Working Papers 2016-21, Center for Research in Economics and Statistics.
    4. Chang, In Hong & Mukerjee, Rahul, 2008. "Matching posterior and frequentist cumulative distribution functions with empirical-type likelihoods in the multiparameter case," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2793-2797, November.
    5. Li, Cheng & Jiang, Wenxin, 2016. "On oracle property and asymptotic validity of Bayesian generalized method of moments," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 132-147.
    6. In Hong Chang & Rahul Mukerjee, 2008. "Bayesian and frequentist confidence intervals arising from empirical-type likelihoods," Biometrika, Biometrika Trust, vol. 95(1), pages 139-147.
    7. Zhang, Yan-Qing & Tang, Nian-Sheng, 2017. "Bayesian local influence analysis of general estimating equations with nonignorable missing data," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 184-200.
    8. Luo, Yu & Graham, Daniel J. & McCoy, Emma J., 2023. "Semiparametric Bayesian doubly robust causal estimation," LSE Research Online Documents on Economics 117944, London School of Economics and Political Science, LSE Library.
    9. Kai Yang & Xue Ding & Xiaohui Yuan, 2022. "Bayesian empirical likelihood inference and order shrinkage for autoregressive models," Statistical Papers, Springer, vol. 63(1), pages 97-121, February.
    10. Jaeger, Adam & Lazar, Nicole A., 2020. "Split sample empirical likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    11. Jean-Pierre Florens & Anna Simoni, 2021. "Gaussian Processes and Bayesian Moment Estimation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 482-492, March.
    12. Zhichao Liu & Catherine Forbes & Heather Anderson, 2017. "Robust Bayesian exponentially tilted empirical likelihood method," Monash Econometrics and Business Statistics Working Papers 21/17, Monash University, Department of Econometrics and Business Statistics.
    13. Vexler, Albert & Zou, Li & Hutson, Alan D., 2019. "The empirical likelihood prior applied to bias reduction of general estimating equations," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 96-106.
    14. Mike G. Tsionas, 2023. "Linex and double-linex regression for parameter estimation and forecasting," Annals of Operations Research, Springer, vol. 323(1), pages 229-245, April.
    15. Siddhartha Chib & Minchul Shin & Anna Simoni, 2022. "Bayesian estimation and comparison of conditional moment models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 740-764, July.
    16. Ventura, Laura & Racugno, Walter, 2012. "On interval and point estimators based on a penalization of the modified profile likelihood," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1285-1289.
    17. Chang, In Hong & Mukerjee, Rahul, 2010. "Highest posterior density regions with approximate frequentist validity: The role of data-dependent priors," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1791-1797, December.
    18. Isaiah Andrews & Anna Mikusheva, 2022. "Optimal Decision Rules for Weak GMM," Econometrica, Econometric Society, vol. 90(2), pages 715-748, March.
    19. Xu, Ke-Li, 2020. "Inference of local regression in the presence of nuisance parameters," Journal of Econometrics, Elsevier, vol. 218(2), pages 532-560.
    20. Rong Tang & Yun Yang, 2022. "Bayesian inference for risk minimization via exponentially tilted empirical likelihood," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1257-1286, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:72:y:2010:i:4:p:533-544. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.