IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i2p539-550.html
   My bibliography  Save this article

Instrumental variable estimation of the causal hazard ratio

Author

Listed:
  • Linbo Wang
  • Eric Tchetgen Tchetgen
  • Torben Martinussen
  • Stijn Vansteelandt

Abstract

Cox's proportional hazards model is one of the most popular statistical models to evaluate associations of exposure with a censored failure time outcome. When confounding factors are not fully observed, the exposure hazard ratio estimated using a Cox model is subject to unmeasured confounding bias. To address this, we propose a novel approach for the identification and estimation of the causal hazard ratio in the presence of unmeasured confounding factors. Our approach is based on a binary instrumental variable, and an additional no‐interaction assumption in a first‐stage regression of the treatment on the IV and unmeasured confounders. We propose, to the best of our knowledge, the first consistent estimator of the (population) causal hazard ratio within an instrumental variable framework. A version of our estimator admits a closed‐form representation. We derive the asymptotic distribution of our estimator and provide a consistent estimator for its asymptotic variance. Our approach is illustrated via simulation studies and a data application.

Suggested Citation

  • Linbo Wang & Eric Tchetgen Tchetgen & Torben Martinussen & Stijn Vansteelandt, 2023. "Instrumental variable estimation of the causal hazard ratio," Biometrics, The International Biometric Society, vol. 79(2), pages 539-550, June.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:539-550
    DOI: 10.1111/biom.13792
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13792
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13792?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. T. Loeys & E. Goetghebeur, 2003. "A Causal Proportional Hazards Estimator for the Effect of Treatment Actually Received in a Randomized Trial with All-or-Nothing Compliance," Biometrics, The International Biometric Society, vol. 59(1), pages 100-105, March.
    2. Jialiang Li & Jason Fine & Alan Brookhart, 2015. "Instrumental variable additive hazards models," Biometrics, The International Biometric Society, vol. 71(1), pages 122-130, March.
    3. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, April.
    4. Terza, Joseph V. & Basu, Anirban & Rathouz, Paul J., 2008. "Two-stage residual inclusion estimation: Addressing endogeneity in health econometric modeling," Journal of Health Economics, Elsevier, vol. 27(3), pages 531-543, May.
    5. Hui Nie & Jing Cheng & Dylan S. Small, 2011. "Inference for the Effect of Treatment on Survival Probability in Randomized Trials with Noncompliance and Administrative Censoring," Biometrics, The International Biometric Society, vol. 67(4), pages 1397-1405, December.
    6. Brigham R. Frandsen, 2015. "Treatment Effects With Censoring and Endogeneity," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1745-1752, December.
    7. Ditte Nørbo Sørensen & Torben Martinussen & Eric Tchetgen Tchetgen, 2019. "A causal proportional hazards estimator under homogeneous or heterogeneous selection in an IV setting," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(4), pages 639-659, October.
    8. Aronow, Peter M. & Carnegie, Allison, 2013. "Beyond LATE: Estimation of the Average Treatment Effect with an Instrumental Variable," Political Analysis, Cambridge University Press, vol. 21(4), pages 492-506.
    9. Abadie, Alberto, 2003. "Semiparametric instrumental variable estimation of treatment response models," Journal of Econometrics, Elsevier, vol. 113(2), pages 231-263, April.
    10. Linbo Wang & Eric Tchetgen Tchetgen, 2018. "Bounded, efficient and multiply robust estimation of average treatment effects using instrumental variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(3), pages 531-550, June.
    11. Pablo Martínez‐Camblor & Todd A. MacKenzie & Douglas O. Staiger & Phillip P. Goodney & A. James O’Malley, 2019. "An instrumental variable procedure for estimating Cox models with non‐proportional hazards in the presence of unmeasured confounding," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 68(4), pages 985-1005, August.
    12. Vaart,A. W. van der, 2000. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521784504, January.
    13. Jing Cheng & Jing Qin & Biao Zhang, 2009. "Semiparametric estimation and inference for distributional and general treatment effects," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(4), pages 881-904, September.
    14. Tchetgen Tchetgen, Eric J. & Robins, James, 2012. "On parametrization, robustness and sensitivity analysis in a marginal structural Cox proportional hazards model for point exposure," Statistics & Probability Letters, Elsevier, vol. 82(5), pages 907-915.
    15. Thomas S. Richardson & James M. Robins & Linbo Wang, 2017. "On Modeling and Estimation for the Relative Risk and Risk Difference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1121-1130, July.
    16. Jack Cuzick & Peter Sasieni & Jonathan Myles & Jonathan Tyrer, 2007. "Estimating the effect of treatment in a proportional hazards model in the presence of non‐compliance and contamination," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(4), pages 565-588, September.
    17. Jaeun Choi & A. James O'Malley, 2017. "Estimating the causal effect of treatment in observational studies with survival time end points and unmeasured confounding," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(1), pages 159-185, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lorenzo Tedesco & Jad Beyhum & Ingrid Van Keilegom, 2023. "Instrumental variable estimation of the proportional hazards model by presmoothing," Papers 2309.02183, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. William Liu, 2023. "A Theory Guide to Using Control Functions to Instrument Hazard Models," Papers 2312.03165, arXiv.org.
    2. Jaeun Choi & A. James O'Malley, 2017. "Estimating the causal effect of treatment in observational studies with survival time end points and unmeasured confounding," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(1), pages 159-185, January.
    3. Ting Ye & Ashkan Ertefaie & James Flory & Sean Hennessy & Dylan S. Small, 2023. "Instrumented difference‐in‐differences," Biometrics, The International Biometric Society, vol. 79(2), pages 569-581, June.
    4. Torben Martinussen & Stijn Vansteelandt & Eric J. Tchetgen Tchetgen & David M. Zucker, 2017. "Instrumental variables estimation of exposure effects on a time‐to‐event endpoint using structural cumulative survival models," Biometrics, The International Biometric Society, vol. 73(4), pages 1140-1149, December.
    5. Bo Wei & Limin Peng & Mei‐Jie Zhang & Jason P. Fine, 2021. "Estimation of causal quantile effects with a binary instrumental variable and censored data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 559-578, July.
    6. Shuwei Li & Limin Peng, 2023. "Instrumental variable estimation of complier causal treatment effect with interval‐censored data," Biometrics, The International Biometric Society, vol. 79(1), pages 253-263, March.
    7. Matthias Brueckner & Andrew Titman & Thomas Jaki, 2019. "Instrumental variable estimation in semi‐parametric additive hazards models," Biometrics, The International Biometric Society, vol. 75(1), pages 110-120, March.
    8. Hui Nie & Jing Cheng & Dylan S. Small, 2011. "Inference for the Effect of Treatment on Survival Probability in Randomized Trials with Noncompliance and Administrative Censoring," Biometrics, The International Biometric Society, vol. 67(4), pages 1397-1405, December.
    9. Jad Beyhum, 2021. "Two-stage least squares with a randomly right censored outcome," Papers 2110.05107, arXiv.org.
    10. Susan Athey & Julie Tibshirani & Stefan Wager, 2016. "Generalized Random Forests," Papers 1610.01271, arXiv.org, revised Apr 2018.
    11. Hung‐Hao Chang, 2024. "The effects of land direct payment program on farm income and production practices," American Journal of Agricultural Economics, John Wiley & Sons, vol. 106(4), pages 1454-1476, August.
    12. Myoung‐jae Lee, 2021. "Instrument residual estimator for any response variable with endogenous binary treatment," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 612-635, July.
    13. Ji Yan & Sally Brocksen, 2013. "Adolescent risk perception, substance use, and educational attainment," Journal of Risk Research, Taylor & Francis Journals, vol. 16(8), pages 1037-1055, September.
    14. Martin Huber, 2019. "An introduction to flexible methods for policy evaluation," Papers 1910.00641, arXiv.org.
    15. Tesfaye, Wondimagegn & Tirivayi, Nyasha, 2020. "Crop diversity, household welfare and consumption smoothing under risk: Evidence from rural Uganda," World Development, Elsevier, vol. 125(C).
    16. Meyer, Sophie-Charlotte, 2016. "Maternal employment and childhood overweight in Germany," Economics & Human Biology, Elsevier, vol. 23(C), pages 84-102.
    17. Jun Li & Serguei Netessine & Sergei Koulayev, 2018. "Price to Compete … with Many: How to Identify Price Competition in High-Dimensional Space," Management Science, INFORMS, vol. 64(9), pages 4118-4136, September.
    18. Atı̇la Abdulkadı̇roğlu & Joshua D. Angrist & Yusuke Narita & Parag Pathak, 2022. "Breaking Ties: Regression Discontinuity Design Meets Market Design," Econometrica, Econometric Society, vol. 90(1), pages 117-151, January.
    19. Giampiero Marra & Matteo Fasiolo & Rosalba Radice & Rainer Winkelmann, 2023. "A flexible copula regression model with Bernoulli and Tweedie margins for estimating the effect of spending on mental health," Health Economics, John Wiley & Sons, Ltd., vol. 32(6), pages 1305-1322, June.
    20. Jad Beyhum & Jean-Pierre FLorens & Ingrid Van Keilegom, 2020. "Nonparametric instrumental regression with right censored duration outcomes," Papers 2011.10423, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:539-550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.