IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v54y2010i1p25-36.html
   My bibliography  Save this article

Estimating smooth distribution function in the presence of heteroscedastic measurement errors

Author

Listed:
  • Wang, Xiao-Feng
  • Fan, Zhaozhi
  • Wang, Bin

Abstract

Measurement error occurs in many biomedical fields. The challenges arise when errors are heteroscedastic since we literally have only one observation for each error distribution. This paper concerns the estimation of smooth distribution function when data are contaminated with heteroscedastic errors. We study two types of methods to recover the unknown distribution function: a Fourier-type deconvolution method and a simulation extrapolation (SIMEX) method. The asymptotics of the two estimators are explored and the asymptotic pointwise confidence bands of the SIMEX estimator are obtained. The finite sample performances of the two estimators are evaluated through a simulation study. Finally, we illustrate the methods with medical rehabilitation data from a neuro-muscular electrical stimulation experiment.

Suggested Citation

  • Wang, Xiao-Feng & Fan, Zhaozhi & Wang, Bin, 2010. "Estimating smooth distribution function in the presence of heteroscedastic measurement errors," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 25-36, January.
  • Handle: RePEc:eee:csdana:v:54:y:2010:i:1:p:25-36
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00302-8
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Delaigle, A. & Gijbels, I., 2004. "Practical bandwidth selection in deconvolution kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 249-267, March.
    2. Nicolai Bissantz & Lutz Dümbgen & Hajo Holzmann & Axel Munk, 2007. "Non‐parametric confidence bands in deconvolution density estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(3), pages 483-506, June.
    3. Carriquiry, Alicia L. & Fuller, Wayne A., 1996. "A Semiparametric Approach to Estimating Usual Intake Distributions," Staff General Research Papers Archive 1036, Iowa State University, Department of Economics.
    4. Bissantz, Nicolai & Dümbgen, Lutz & Holzmann, Hajo & Munk, Axel, 2007. "Nonparametric confidence bands in deconvolution density estimation," Technical Reports 2007,03, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    5. Staudenmayer, John & Ruppert, David & Buonaccorsi, John P., 2008. "Density Estimation in the Presence of Heteroscedastic Measurement Error," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 726-736, June.
    6. John Staudenmayer & David Ruppert, 2004. "Local polynomial regression and simulation–extrapolation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 17-30, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:jss:jstsof:39:i10 is not listed on IDEAS
    2. Battistin, Erich & Lamarche, Carlos & Rettore, Enrico, 2020. "Quantiles of the Gain Distribution of an Early Childhood Intervention," IZA Discussion Papers 13101, Institute of Labor Economics (IZA).
    3. Jochmans, Koen & Weidner, Martin, 2024. "Inference On A Distribution From Noisy Draws," Econometric Theory, Cambridge University Press, vol. 40(1), pages 60-97, February.
    4. Battistin, Erich & Lamarche, Carlos & Rettore, Enrico, 2020. "Quantiles of the Gain Distribution of an Early Child Intervention," CEPR Discussion Papers 14721, C.E.P.R. Discussion Papers.
    5. Wang, Xiao-Feng & Ye, Deping, 2015. "Conditional density estimation in measurement error problems," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 38-50.
    6. Bin Wang & Shu-Guang Zhang & Xiao-Feng Wang & Ming Tan & Yaguang Xi, 2012. "Testing for Differentially-Expressed MicroRNAs with Errors-in-Variables Nonparametric Regression," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-12, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Hao & Otsu, Taisuke & Taylor, Luke, 2021. "Average Derivative Estimation Under Measurement Error," Econometric Theory, Cambridge University Press, vol. 37(5), pages 1004-1033, October.
    2. Joel L. Horowitz, 2013. "Ill-posed inverse problems in economics," CeMMAP working papers 37/13, Institute for Fiscal Studies.
    3. Hao Dong & Daniel L. Millimet, 2020. "Propensity Score Weighting with Mismeasured Covariates: An Application to Two Financial Literacy Interventions," JRFM, MDPI, vol. 13(11), pages 1-24, November.
    4. Kato, Kengo & Sasaki, Yuya, 2018. "Uniform confidence bands in deconvolution with unknown error distribution," Journal of Econometrics, Elsevier, vol. 207(1), pages 129-161.
    5. Hao Dong & Yuya Sasaki, 2022. "Estimation of average derivatives of latent regressors: with an application to inference on buffer-stock saving," Departmental Working Papers 2204, Southern Methodist University, Department of Economics.
    6. Birke, Melanie & Bissantz, Nicolai, 2007. "Shape constrained estimators in inverse regression models with convolution-type operator," Technical Reports 2007,35, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    7. Yousri Slaoui, 2021. "Data-driven Deconvolution Recursive Kernel Density Estimators Defined by Stochastic Approximation Method," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 312-352, February.
    8. Kengo Kato & Yuya Sasaki & Takuya Ura, 2021. "Robust inference in deconvolution," Quantitative Economics, Econometric Society, vol. 12(1), pages 109-142, January.
    9. Söhl, Jakob & Trabs, Mathias, 2012. "A uniform central limit theorem and efficiency for deconvolution estimators," SFB 649 Discussion Papers 2012-046, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    10. Joel L. Horowitz, 2013. "Ill-posed inverse problems in economics," CeMMAP working papers CWP37/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Kurisu, Daisuke & Otsu, Taisuke, 2022. "On linearization of nonparametric deconvolution estimators for repeated measurements model," LSE Research Online Documents on Economics 112676, London School of Economics and Political Science, LSE Library.
    12. Ma, Jun & Marmer, Vadim & Yu, Zhengfei, 2023. "Inference on individual treatment effects in nonseparable triangular models," Journal of Econometrics, Elsevier, vol. 235(2), pages 2096-2124.
    13. Adusumilli, Karun & Kurisu, Daisuke & Otsu, Taisuke & Whang, Yoon-Jae, 2020. "Inference on distribution functions under measurement error," Journal of Econometrics, Elsevier, vol. 215(1), pages 131-164.
    14. Birke, Melanie & Bissantz, Nicolai & Holzmann, Hajo, 2008. "Confidence bands for inverse regression models with application to gel electrophoresis," Technical Reports 2008,16, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    15. Delaigle, Aurore & Fan, Jianqing & Carroll, Raymond J., 2009. "A Design-Adaptive Local Polynomial Estimator for the Errors-in-Variables Problem," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 348-359.
    16. DongHyuk Lee & Soumendra N. Lahiri & Samiran Sinha, 2020. "A test of homogeneity of distributions when observations are subject to measurement errors," Biometrics, The International Biometric Society, vol. 76(3), pages 821-833, September.
    17. Dong, Hao & Taylor, Luke, 2022. "Nonparametric Significance Testing In Measurement Error Models," Econometric Theory, Cambridge University Press, vol. 38(3), pages 454-496, June.
    18. Kato, Kengo & Kurisu, Daisuke, 2020. "Bootstrap confidence bands for spectral estimation of Lévy densities under high-frequency observations," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1159-1205.
    19. Julie McIntyre & Brent A. Johnson & Stephen M. Rappaport, 2018. "Monte Carlo methods for nonparametric regression with heteroscedastic measurement error," Biometrics, The International Biometric Society, vol. 74(2), pages 498-505, June.
    20. Huang, Danyang & Hu, Wei & Jing, Bingyi & Zhang, Bo, 2023. "Grouped spatial autoregressive model," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:1:p:25-36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.