When survey science met web tracking: Presenting an error framework for metered data
Author
Abstract
Suggested Citation
DOI: 10.1111/rssa.12956
Download full text from publisher
References listed on IDEAS
- Jake M. Hofman & Duncan J. Watts & Susan Athey & Filiz Garip & Thomas L. Griffiths & Jon Kleinberg & Helen Margetts & Sendhil Mullainathan & Matthew J. Salganik & Simine Vazire & Alessandro Vespignani, 2021. "Integrating explanation and prediction in computational social science," Nature, Nature, vol. 595(7866), pages 181-188, July.
- D. L. Oberski & A. Kirchner & S. Eckman & F. Kreuter, 2017. "Evaluating the Quality of Survey and Administrative Data with Generalized Multitrait-Multimethod Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1477-1489, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Keusch, Florian & Pankowska, Paulina & Cernat, Alexandru & Bach, Ruben L., 2023. "Do you have two minutes to talk about your data? Willingness to participate and nonparticipation bias in Facebook data donation," SocArXiv n9rx3, Center for Open Science.
- Keusch, Florian & Pankowska, Paulina & Cernat, Alexandru & Bach, Ruben L., 2023. "Do you have two minutes to talk about your data? Willingness to participate and nonparticipation bias in Facebook data donation," SocArXiv n9rx3_v1, Center for Open Science.
- Camilla Salvatore, 2023. "Inference with non-probability samples and survey data integration: a science mapping study," METRON, Springer;Sapienza Università di Roma, vol. 81(1), pages 83-107, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rahal, Charles & Verhagen, Mark D. & Kirk, David, 2021. "The Rise of Machine Learning in the Academic Social Sciences," SocArXiv gydve_v1, Center for Open Science.
- van Delden Arnout & van der Laan Jan & Prins Annemarie, 2018. "Detecting Reporting Errors in Data from Decentralised Autonomous Administrations with an Application to Hospital Data," Journal of Official Statistics, Sciendo, vol. 34(4), pages 863-888, December.
- Meyer, Bruce D. & Mittag, Nikolas, 2019. "Combining Administrative and Survey Data to Improve Income Measurement," IZA Discussion Papers 12266, Institute of Labor Economics (IZA).
- Nelson P. Rayl & Nitish R. Sinha, 2022. "Integrating Prediction and Attribution to Classify News," Finance and Economics Discussion Series 2022-042, Board of Governors of the Federal Reserve System (U.S.).
- Ogbonnaya, Ijeoma Nwabuzor & Keeney, Annie J., 2018. "A systematic review of the effectiveness of interagency and cross-system collaborations in the United States to improve child welfare outcomes," Children and Youth Services Review, Elsevier, vol. 94(C), pages 225-245.
- Dario Sansone & Anna Zhu, 2023.
"Using Machine Learning to Create an Early Warning System for Welfare Recipients,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(5), pages 959-992, October.
- Dario Sansone & Anna Zhu, 2020. "Using Machine Learning to Create an Early Warning System for Welfare Recipients," Papers 2011.12057, arXiv.org, revised May 2021.
- Sansone, Dario & Zhu, Anna, 2021. "Using Machine Learning to Create an Early Warning System for Welfare Recipients," IZA Discussion Papers 14377, Institute of Labor Economics (IZA).
- Evangelos Katsamakas, 2024. "Business models for the simulation hypothesis," Papers 2404.08991, arXiv.org.
- Stüber, Heiko & Grabka, Markus M. & Schnitzlein, Daniel D., 2023.
"A tale of two data sets: comparing German administrative and survey data using wage inequality as an example,"
Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 57, pages 1-8.
- Heiko Stüber & Markus M. Grabka & Daniel D. Schnitzlein, 2023. "A tale of two data sets: comparing German administrative and survey data using wage inequality as an example," Journal for Labour Market Research, Springer;Institute for Employment Research/ Institut für Arbeitsmarkt- und Berufsforschung (IAB), vol. 57(1), pages 1-18, December.
- Verhagen, Mark D., 2021. "A Pragmatist's Guide to Using Prediction in the Social Sciences," SocArXiv tjkcy_v1, Center for Open Science.
- Ari Hyytinen & Petri Rouvinen & Mika Pajarinen & Joosua Virtanen, 2023. "Ex Ante Predictability of Rapid Growth: A Design Science Approach," Entrepreneurship Theory and Practice, , vol. 47(6), pages 2465-2493, November.
- Miguel G. Folgado & Veronica Sanz, 2022. "Exploring the political pulse of a country using data science tools," Journal of Computational Social Science, Springer, vol. 5(1), pages 987-1000, May.
- Bosch Jover, Oriol & Revilla, Melanie, 2022. "When survey science met web tracking: presenting an error framework for metered data," LSE Research Online Documents on Economics 116431, London School of Economics and Political Science, LSE Library.
- Pina-Sánchez, Jose & Buil-Gil, David & brunton-smith, ian & Cernat, Alexandru, 2021. "The impact of measurement error in models using police recorded crime rates," SocArXiv ydf4b, Center for Open Science.
- Meyer, Bruce D. & Mittag, Nikolas, 2017. "Using Linked Survey and Administrative Data to Better Measure Income: Implications for Poverty, Program Effectiveness and Holes in the Safety Net," IZA Discussion Papers 10943, Institute of Labor Economics (IZA).
- Malgorzata J. Krawczyk & Mateusz Libirt & Krzysztof Malarz, 2024. "Analysis of scientific cooperation at the international and intercontinental level," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(8), pages 4983-5002, August.
- Isabelle Bonhoure & Anna Cigarini & Julián Vicens & Bàrbara Mitats & Josep Perelló, 2023. "Reformulating computational social science with citizen social science: the case of a community-based mental health care research," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-14, December.
- Elizabeth Dolan & James Goulding & Harry Marshall & Gavin Smith & Gavin Long & Laila J. Tata, 2023. "Assessing the value of integrating national longitudinal shopping data into respiratory disease forecasting models," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
- Bruce D. Meyer & Nikolas Mittag, 2019. "Combining Administrative and Survey Data to Improve Income Measurement," NBER Working Papers 25738, National Bureau of Economic Research, Inc.
- Filippo Simini & Gianni Barlacchi & Massimilano Luca & Luca Pappalardo, 2021. "A Deep Gravity model for mobility flows generation," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
- Ahmed Abbasi & Jeffrey Parsons & Gautam Pant & Olivia R. Liu Sheng & Suprateek Sarker, 2024. "Pathways for Design Research on Artificial Intelligence," Information Systems Research, INFORMS, vol. 35(2), pages 441-459, June.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:185:y:2022:i:s2:p:s408-s436. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.