IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v183y2020i4p1793-1818.html
   My bibliography  Save this article

A non‐parametric projection‐based estimator for the probability of causation, with application to water sanitation in Kenya

Author

Listed:
  • Maria Cuellar
  • Edward H. Kennedy

Abstract

Current estimation methods for the probability of causation ‘PC’ make strong parametric assumptions or are inefficient. We derive a non‐parametric influence‐function‐based estimator for a projection of PC, which allows for simple interpretation and valid inference by making weak structural assumptions. We apply our estimator to real data from an experiment in Kenya. This experiment found, by estimating the average treatment effect, that protecting water springs reduces childhood disease. However, before scaling up this intervention, it is important to determine whether it was the exposure, and not something else, that caused the outcome. Indeed, we find that some children, who were exposed to a high concentration of bacteria in drinking water and had a diarrhoeal disease, would probably have contracted the disease absent the exposure since the estimated PC for an average child in this study is 0.12 with a 95% confidence interval of (0.11, 0.13). Our non‐parametric method offers researchers a way to estimate PC, which is essential if we wish to determine not only the average treatment effect, but also whether an exposure probably caused the observed outcome.

Suggested Citation

  • Maria Cuellar & Edward H. Kennedy, 2020. "A non‐parametric projection‐based estimator for the probability of causation, with application to water sanitation in Kenya," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1793-1818, October.
  • Handle: RePEc:bla:jorssa:v:183:y:2020:i:4:p:1793-1818
    DOI: 10.1111/rssa.12548
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssa.12548
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssa.12548?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    2. Stephen W. Lagakos & Frederick Mosteller, 1986. "Assigned Shares in Compensation for Radiation‐Related Cancers," Risk Analysis, John Wiley & Sons, vol. 6(3), pages 345-357, September.
    3. Michael Kremer & Jessica Leino & Edward Miguel & Alix Peterson Zwane, 2011. "Spring Cleaning: Rural Water Impacts, Valuation, and Property Rights Institutions," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 126(1), pages 145-205.
    4. Thomas S. Richardson & James M. Robins & Linbo Wang, 2017. "On Modeling and Estimation for the Relative Risk and Risk Difference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1121-1130, July.
    5. Edward H. Kennedy & Scott Lorch & Dylan S. Small, 2019. "Robust causal inference with continuous instruments using the local instrumental variable curve," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(1), pages 121-143, February.
    6. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey, 2017. "Double/Debiased/Neyman Machine Learning of Treatment Effects," American Economic Review, American Economic Association, vol. 107(5), pages 261-265, May.
    7. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2016. "Double/Debiased Machine Learning for Treatment and Causal Parameters," Papers 1608.00060, arXiv.org, revised Nov 2024.
    8. Elizabeth L. Ogburn & Andrea Rotnitzky & James M. Robins, 2015. "Doubly robust estimation of the local average treatment effect curve," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(2), pages 373-396, March.
    9. Edward H. Kennedy & Zongming Ma & Matthew D. McHugh & Dylan S. Small, 2017. "Non-parametric methods for doubly robust estimation of continuous treatment effects," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1229-1245, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuya Sasaki & Takuya Ura & Yichong Zhang, 2022. "Unconditional quantile regression with high‐dimensional data," Quantitative Economics, Econometric Society, vol. 13(3), pages 955-978, July.
    2. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    3. Su, Liangjun & Ura, Takuya & Zhang, Yichong, 2019. "Non-separable models with high-dimensional data," Journal of Econometrics, Elsevier, vol. 212(2), pages 646-677.
    4. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    5. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    6. Yoganathan, Vignesh & Osburg, Victoria-Sophie, 2024. "The mind in the machine: Estimating mind perception's effect on user satisfaction with voice-based conversational agents," Journal of Business Research, Elsevier, vol. 175(C).
    7. Waverly Wei & Maya Petersen & Mark J van der Laan & Zeyu Zheng & Chong Wu & Jingshen Wang, 2023. "Efficient targeted learning of heterogeneous treatment effects for multiple subgroups," Biometrics, The International Biometric Society, vol. 79(3), pages 1934-1946, September.
    8. Huber Martin & Wüthrich Kaspar, 2019. "Local Average and Quantile Treatment Effects Under Endogeneity: A Review," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-27, January.
    9. Miquel Oliu-Barton & Bary S. R. Pradelski & Nicolas Woloszko & Lionel Guetta-Jeanrenaud & Philippe Aghion & Patrick Artus & Arnaud Fontanet & Philippe Martin & Guntram B. Wolff, 2022. "The effect of COVID certificates on vaccine uptake, health outcomes, and the economy," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    10. Sander Gerritsen & Mark Kattenberg & Sonny Kuijpers, 2019. "The impact of age at arrival on education and mental health," CPB Discussion Paper 389.rdf, CPB Netherlands Bureau for Economic Policy Analysis.
    11. Elliott Ash & Daniel L. Chen & Sergio Galletta, 2022. "Measuring Judicial Sentiment: Methods and Application to US Circuit Courts," Economica, London School of Economics and Political Science, vol. 89(354), pages 362-376, April.
    12. Pradhi Aggarwal & Alec Brandon & Ariel Goldszmidt & Justin Holz & John List & Ian Muir & Gregory Sun & Thomas Yu, 2022. "High-frequency location data shows that race affects the likelihood of being stopped and fined for speeding," Natural Field Experiments 00764, The Field Experiments Website.
    13. Songul Cinaroglu, 2020. "Modelling unbalanced catastrophic health expenditure data by using machine‐learning methods," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 27(4), pages 168-181, October.
    14. Miruna Oprescu & Vasilis Syrgkanis & Zhiwei Steven Wu, 2018. "Orthogonal Random Forest for Causal Inference," Papers 1806.03467, arXiv.org, revised Sep 2019.
    15. Sander Gerritsen & Mark Kattenberg & Sonny Kuijpers, 2019. "The impact of age at arrival on education and mental health," CPB Discussion Paper 389, CPB Netherlands Bureau for Economic Policy Analysis.
    16. Mark Kattenberg & Bas Scheer & Jurre Thiel, 2023. "Causal forests with fixed effects for treatment effect heterogeneity in difference-in-differences," CPB Discussion Paper 452, CPB Netherlands Bureau for Economic Policy Analysis.
    17. Jonas Metzger, 2022. "Adversarial Estimators," Papers 2204.10495, arXiv.org, revised Jun 2022.
    18. Yumou Qiu & Jing Tao & Xiao‐Hua Zhou, 2021. "Inference of heterogeneous treatment effects using observational data with high‐dimensional covariates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 1016-1043, November.
    19. S Klaassen & J Kueck & M Spindler & V Chernozhukov, 2023. "Uniform inference in high-dimensional Gaussian graphical models," Biometrika, Biometrika Trust, vol. 110(1), pages 51-68.
    20. Victor Chernozhukov & Carlos Cinelli & Whitney Newey & Amit Sharma & Vasilis Syrgkanis, 2021. "Long Story Short: Omitted Variable Bias in Causal Machine Learning," Papers 2112.13398, arXiv.org, revised May 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:183:y:2020:i:4:p:1793-1818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.