IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v110y2015i512p1735-1744.html
   My bibliography  Save this article

Small Area Estimation With Uncertain Random Effects

Author

Listed:
  • Gauri Sankar Datta
  • Abhyuday Mandal

Abstract

Random effects models play an important role in model-based small area estimation. Random effects account for any lack of fit of a regression model for the population means of small areas on a set of explanatory variables. In a recent article, Datta, Hall, and Mandal showed that if the random effects can be dispensed with via a suitable test, then the model parameters and the small area means may be estimated with substantially higher accuracy. The work of Datta, Hall, and Mandal is most useful when the number of small areas, m , is moderately large. For large m , the null hypothesis of no random effects will likely be rejected. Rejection of the null hypothesis is usually caused by a few large residuals signifying a departure of the direct estimator from the synthetic regression estimator. As a flexible alternative to the Fay--Herriot random effects model and the approach in Datta, Hall, and Mandal, in this article we consider a mixture model for random effects. It is reasonably expected that small areas with population means explained adequately by covariates have little model error, and the other areas with means not adequately explained by covariates will require a random component added to the regression model. This model is a useful alternative to the usual random effects model and the data determine the extent of lack of fit of the regression model for a particular small area, and include a random effect if needed. Unlike the Datta, Hall, and Mandal approach which recommends excluding random effects from all small areas if a test of null hypothesis of no random effects is not rejected, the present model is more flexible. We used this mixture model to estimate poverty ratios for 5--17-year-old-related children for the 50 U.S. states and Washington, DC. This application is motivated by the SAIPE project of the U.S. Census Bureau. We empirically evaluated the accuracy of the direct estimates and the estimates obtained from our mixture model and the Fay--Herriot random effects model. These empirical evaluations and a simulation study, in conjunction with a lower posterior variance of the new estimates, show that the new estimates are more accurate than both the frequentist and the Bayes estimates resulting from the standard Fay--Herriot model. Supplementary materials for this article are available online.

Suggested Citation

  • Gauri Sankar Datta & Abhyuday Mandal, 2015. "Small Area Estimation With Uncertain Random Effects," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1735-1744, December.
  • Handle: RePEc:taf:jnlasa:v:110:y:2015:i:512:p:1735-1744
    DOI: 10.1080/01621459.2015.1016526
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2015.1016526
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2015.1016526?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. K. Shuvo Bakar & Nicholas Biddle & Philip Kokic & Huidong Jin, 2020. "A Bayesian spatial categorical model for prediction to overlapping geographical areas in sample surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 535-563, February.
    2. Sugasawa, Shonosuke & Kubokawa, Tatsuya, 2017. "Transforming response values in small area prediction," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 47-60.
    3. Elaheh Torkashvand & Mohammad Jafari Jozani & Mahmoud Torabi, 2017. "Clustering in small area estimation with area level linear mixed models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(4), pages 1253-1279, October.
    4. Sugasawa, Shonosuke & Kubokawa, Tatsuya, 2017. "Bayesian estimators in uncertain nested error regression models," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 52-63.
    5. Adrijo Chakraborty & Gauri Sankar Datta & Abhyuday Mandal, 2016. "A Two-Component Normal Mixture Alternative To The Fay-Herriot Model," Statistics in Transition New Series, Polish Statistical Association, vol. 17(1), pages 67-90, March.
    6. repec:csb:stintr:v:17:y:2016:i:1:p:67-90 is not listed on IDEAS
    7. Tamal Ghosh & Malay Ghosh & Jerry J. Maples & Xueying Tang, 2022. "Multivariate Global-Local Priors for Small Area Estimation," Stats, MDPI, vol. 5(3), pages 1-16, July.
    8. Sun, Hanmei & Jiang, Jiming & Nguyen, Thuan & Luan, Yihui, 2018. "Best look-alike prediction: Another look at the Bayesian classifier and beyond," Statistics & Probability Letters, Elsevier, vol. 143(C), pages 37-42.
    9. Harm Jan Boonstra & Jan van den Brakel & Sumonkanti Das, 2021. "Multilevel time series modelling of mobility trends in the Netherlands for small domains," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 985-1007, July.
    10. Shonosuke Sugasawa & Tatsuya Kubokawa & Kota Ogasawara, 2017. "Empirical Uncertain Bayes Methods in Area-level Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(3), pages 684-706, September.
    11. Chakraborty Adrijo & Datta Gauri Sankar & Mandal Abhyuday, 2016. "A Two-Component Normal Mixture Alternative to the Fay-Herriot Model," Statistics in Transition New Series, Statistics Poland, vol. 17(1), pages 67-90, March.
    12. Malay Ghosh, 2020. "Small area estimation: its evolution in five decades," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 1-22, August.
    13. Ghosh Malay, 2020. "Small area estimation: its evolution in five decades," Statistics in Transition New Series, Statistics Poland, vol. 21(4), pages 1-22, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:110:y:2015:i:512:p:1735-1744. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.