IDEAS home Printed from https://ideas.repec.org/a/bla/jinfst/v72y2021i8p979-994.html
   My bibliography  Save this article

Ethnicity‐based name partitioning for author name disambiguation using supervised machine learning

Author

Listed:
  • Jinseok Kim
  • Jenna Kim
  • Jason Owen‐Smith

Abstract

In several author name disambiguation studies, some ethnic name groups such as East Asian names are reported to be more difficult to disambiguate than others. This implies that disambiguation approaches might be improved if ethnic name groups are distinguished before disambiguation. We explore the potential of ethnic name partitioning by comparing performance of four machine learning algorithms trained and tested on the entire data or specifically on individual name groups. Results show that ethnicity‐based name partitioning can substantially improve disambiguation performance because the individual models are better suited for their respective name group. The improvements occur across all ethnic name groups with different magnitudes. Performance gains in predicting matched name pairs outweigh losses in predicting nonmatched pairs. Feature (e.g., coauthor name) similarities of name pairs vary across ethnic name groups. Such differences may enable the development of ethnicity‐specific feature weights to improve prediction for specific ethic name categories. These findings are observed for three labeled data with a natural distribution of problem sizes as well as one in which all ethnic name groups are controlled for the same sizes of ambiguous names. This study is expected to motive scholars to group author names based on ethnicity prior to disambiguation.

Suggested Citation

  • Jinseok Kim & Jenna Kim & Jason Owen‐Smith, 2021. "Ethnicity‐based name partitioning for author name disambiguation using supervised machine learning," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(8), pages 979-994, August.
  • Handle: RePEc:bla:jinfst:v:72:y:2021:i:8:p:979-994
    DOI: 10.1002/asi.24459
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asi.24459
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asi.24459?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jian Wang & Kaspars Berzins & Diana Hicks & Julia Melkers & Fang Xiao & Diogo Pinheiro, 2012. "A boosted-trees method for name disambiguation," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(2), pages 391-411, November.
    2. Jinseok Kim & Jason Owen-Smith, 2021. "ORCID-linked labeled data for evaluating author name disambiguation at scale," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 2057-2083, March.
    3. Jinseok Kim & Jenna Kim, 2018. "The impact of imbalanced training data on machine learning for author name disambiguation," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 511-526, October.
    4. Dongwook Shin & Taehwan Kim & Joongmin Choi & Jungsun Kim, 2014. "Author name disambiguation using a graph model with node splitting and merging based on bibliographic information," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(1), pages 15-50, July.
    5. Andreas Strotmann & Dangzhi Zhao, 2012. "Author name disambiguation: What difference does it make in author-based citation analysis?," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(9), pages 1820-1833, September.
    6. Anderson A. Ferreira & Adriano Veloso & Marcos André Gonçalves & Alberto H. F. Laender, 2014. "Self-training author name disambiguation for information scarce scenarios," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(6), pages 1257-1278, June.
    7. Jiang Wu & Xiu-Hao Ding, 2013. "Author name disambiguation in scientific collaboration and mobility cases," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(3), pages 683-697, September.
    8. Alan Filipe Santana & Marcos André Gonçalves & Alberto H. F. Laender & Anderson A. Ferreira, 2017. "Incremental author name disambiguation by exploiting domain-specific heuristics," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(4), pages 931-945, April.
    9. Jia Zhu & Xingcheng Wu & Xueqin Lin & Changqin Huang & Gabriel Pui Cheong Fung & Yong Tang, 2018. "A novel multiple layers name disambiguation framework for digital libraries using dynamic clustering," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 781-794, March.
    10. Ricardo G. Cota & Anderson A. Ferreira & Cristiano Nascimento & Marcos André Gonçalves & Alberto H. F. Laender, 2010. "An unsupervised heuristic‐based hierarchical method for name disambiguation in bibliographic citations," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(9), pages 1853-1870, September.
    11. Anne-Wil Harzing, 2015. "Health warning: might contain multiple personalities—the problem of homonyms in Thomson Reuters Essential Science Indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 2259-2270, December.
    12. Kim, Jinseok & Diesner, Jana, 2015. "The effect of data pre-processing on understanding the evolution of collaboration networks," Journal of Informetrics, Elsevier, vol. 9(1), pages 226-236.
    13. Jan Schulz, 2016. "Using Monte Carlo simulations to assess the impact of author name disambiguation quality on different bibliometric analyses," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(3), pages 1283-1298, June.
    14. Jinseok Kim, 2018. "Evaluating author name disambiguation for digital libraries: a case of DBLP," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1867-1886, September.
    15. Jinseok Kim & Jana Diesner, 2016. "Distortive effects of initial-based name disambiguation on measurements of large-scale coauthorship networks," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(6), pages 1446-1461, June.
    16. Jinseok Kim & Jenna Kim, 2020. "Effect of forename string on author name disambiguation," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 71(7), pages 839-855, July.
    17. Hirotaka Kawashima & Hiroyuki Tomizawa, 2015. "Accuracy evaluation of Scopus Author ID based on the largest funding database in Japan," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(3), pages 1061-1071, June.
    18. Ricardo G. Cota & Anderson A. Ferreira & Cristiano Nascimento & Marcos André Gonçalves & Alberto H. F. Laender, 2010. "An unsupervised heuristic-based hierarchical method for name disambiguation in bibliographic citations," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(9), pages 1853-1870, September.
    19. Mark-Christoph Müller & Florian Reitz & Nicolas Roy, 2017. "Data sets for author name disambiguation: an empirical analysis and a new resource," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1467-1500, June.
    20. Andreas Strotmann & Dangzhi Zhao, 2012. "Author name disambiguation: What difference does it make in author‐based citation analysis?," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(9), pages 1820-1833, September.
    21. Song, Min & Kim, Erin Hea-Jin & Kim, Ha Jin, 2015. "Exploring author name disambiguation on PubMed-scale," Journal of Informetrics, Elsevier, vol. 9(4), pages 924-941.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diego Kozlowski & Dakota S Murray & Alexis Bell & Will Hulsey & Vincent Larivière & Thema Monroe-White & Cassidy R Sugimoto, 2022. "Avoiding bias when inferring race using name-based approaches," PLOS ONE, Public Library of Science, vol. 17(3), pages 1-16, March.
    2. Humaira Waqas & Abdul Qadir, 2022. "Completing features for author name disambiguation (AND): an empirical analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(2), pages 1039-1063, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinseok Kim & Jenna Kim, 2020. "Effect of forename string on author name disambiguation," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 71(7), pages 839-855, July.
    2. Jinseok Kim & Jinmo Kim & Jason Owen-Smith, 2019. "Generating automatically labeled data for author name disambiguation: an iterative clustering method," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 253-280, January.
    3. Jinseok Kim, 2019. "A fast and integrative algorithm for clustering performance evaluation in author name disambiguation," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(2), pages 661-681, August.
    4. Jinseok Kim & Jason Owen-Smith, 2021. "ORCID-linked labeled data for evaluating author name disambiguation at scale," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 2057-2083, March.
    5. Ciriaco Andrea D’Angelo & Nees Jan Eck, 2020. "Collecting large-scale publication data at the level of individual researchers: a practical proposal for author name disambiguation," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(2), pages 883-907, May.
    6. Li Zhang & Wei Lu & Jinqing Yang, 2023. "LAGOS‐AND: A large gold standard dataset for scholarly author name disambiguation," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(2), pages 168-185, February.
    7. Jinseok Kim & Jenna Kim, 2018. "The impact of imbalanced training data on machine learning for author name disambiguation," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 511-526, October.
    8. Jinseok Kim, 2018. "Evaluating author name disambiguation for digital libraries: a case of DBLP," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1867-1886, September.
    9. Humaira Waqas & Muhammad Abdul Qadir, 2021. "Multilayer heuristics based clustering framework (MHCF) for author name disambiguation," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7637-7678, September.
    10. Humaira Waqas & Abdul Qadir, 2022. "Completing features for author name disambiguation (AND): an empirical analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(2), pages 1039-1063, February.
    11. Helena Mihaljević & Lucía Santamaría, 2021. "Disambiguation of author entities in ADS using supervised learning and graph theory methods," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 3893-3917, May.
    12. Rehs, Andreas, 2021. "A supervised machine learning approach to author disambiguation in the Web of Science," Journal of Informetrics, Elsevier, vol. 15(3).
    13. KM. Pooja & Samrat Mondal & Joydeep Chandra, 2021. "Exploiting similarities across multiple dimensions for author name disambiguation," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7525-7560, September.
    14. Jan Schulz, 2016. "Using Monte Carlo simulations to assess the impact of author name disambiguation quality on different bibliometric analyses," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(3), pages 1283-1298, June.
    15. Dangzhi Zhao & Andreas Strotmann, 2020. "Telescopic and panoramic views of library and information science research 2011–2018: a comparison of four weighting schemes for author co-citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 255-270, July.
    16. Kim, Jinseok & Diesner, Jana, 2015. "The effect of data pre-processing on understanding the evolution of collaboration networks," Journal of Informetrics, Elsevier, vol. 9(1), pages 226-236.
    17. Andrea Ancona & Roy Cerqueti & Gianluca Vagnani, 2023. "A novel methodology to disambiguate organization names: an application to EU Framework Programmes data," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4447-4474, August.
    18. Hao Wu & Bo Li & Yijian Pei & Jun He, 2014. "Unsupervised author disambiguation using Dempster–Shafer theory," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(3), pages 1955-1972, December.
    19. Mahsa Kaveh & Mahdieh Mirzabeigi & Hajar Sotudeh & Amirsaeid Moloodi, 2022. "The effects of the challenges in the transliteration of Persian names into English on the recall of retrieved results in the web of science," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(2), pages 1099-1128, February.
    20. Song, Min & Kim, Erin Hea-Jin & Kim, Ha Jin, 2015. "Exploring author name disambiguation on PubMed-scale," Journal of Informetrics, Elsevier, vol. 9(4), pages 924-941.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jinfst:v:72:y:2021:i:8:p:979-994. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.asis.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.