IDEAS home Printed from https://ideas.repec.org/a/bla/jinfst/v68y2017i4p931-945.html
   My bibliography  Save this article

Incremental author name disambiguation by exploiting domain-specific heuristics

Author

Listed:
  • Alan Filipe Santana
  • Marcos André Gonçalves
  • Alberto H. F. Laender
  • Anderson A. Ferreira

Abstract

No abstract is available for this item.

Suggested Citation

  • Alan Filipe Santana & Marcos André Gonçalves & Alberto H. F. Laender & Anderson A. Ferreira, 2017. "Incremental author name disambiguation by exploiting domain-specific heuristics," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(4), pages 931-945, April.
  • Handle: RePEc:bla:jinfst:v:68:y:2017:i:4:p:931-945
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/asi.23726
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinseok Kim & Jason Owen-Smith, 2021. "ORCID-linked labeled data for evaluating author name disambiguation at scale," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 2057-2083, March.
    2. Humaira Waqas & Muhammad Abdul Qadir, 2021. "Multilayer heuristics based clustering framework (MHCF) for author name disambiguation," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7637-7678, September.
    3. Xiaozan Lyu & Rodrigo Costas, 2021. "Studying the characteristics of scientific communities using individual-level bibliometrics: the case of Big Data research," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6965-6987, August.
    4. Jinseok Kim, 2019. "A fast and integrative algorithm for clustering performance evaluation in author name disambiguation," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(2), pages 661-681, August.
    5. Jinseok Kim & Jenna Kim & Jason Owen‐Smith, 2021. "Ethnicity‐based name partitioning for author name disambiguation using supervised machine learning," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(8), pages 979-994, August.
    6. Jinseok Kim & Jenna Kim, 2020. "Effect of forename string on author name disambiguation," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 71(7), pages 839-855, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jinfst:v:68:y:2017:i:4:p:931-945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.asis.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.