IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v126y2021i5d10.1007_s11192-021-03951-w.html
   My bibliography  Save this article

Disambiguation of author entities in ADS using supervised learning and graph theory methods

Author

Listed:
  • Helena Mihaljević

    (Hochschule für Technik und Wirtschaft)

  • Lucía Santamaría

    (Amazon Development Center)

Abstract

Disambiguation of authors in digital libraries is essential for many tasks, including efficient bibliographical searches and scientometric analyses to the level of individuals. The question of how to link documents written by the same person has been given much attention by academic publishers and information retrieval researchers alike. Usual approaches rely on publications’ metadata such as affiliations, email addresses, co-authors, or scholarly topics. Lack of homogeneity in the structure of bibliographic collections and discipline-specific dissimilarities between them make the creation of general-purpose disambiguators arduous. We present an algorithm to disambiguate authorships in the Astrophysics Data System (ADS) following an established semi-supervised approach of training a classifier on authorship pairs and clustering the resulting graphs. Due to the lack of high-signal features such as email addresses and citations, we engineer additional content- and location-based features via text embeddings and named-entity recognition. We train various nonlinear tree-based classifiers and detect communities from the resulting weighted graphs through label propagation, a fast yet efficient algorithm that requires no tuning. The resulting procedure reaches reasonable complexity and offers possibilities for interpretation. We apply our method to the creation of author entities in a recent ADS snapshot. The algorithm is evaluated on 39 manually-labeled author blocks comprising 9545 authorships from 562 author profiles. Our best approach utilizes the Random Forest classifier and yields a micro- and macro-averaged BCubed $$\mathrm {F}_1$$ F 1 score of 0.95 and 0.87, respectively. We release our code and labeled data publicly to foster the development of further disambiguation procedures for ADS.

Suggested Citation

  • Helena Mihaljević & Lucía Santamaría, 2021. "Disambiguation of author entities in ADS using supervised learning and graph theory methods," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 3893-3917, May.
  • Handle: RePEc:spr:scient:v:126:y:2021:i:5:d:10.1007_s11192-021-03951-w
    DOI: 10.1007/s11192-021-03951-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-021-03951-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-021-03951-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohsen Jadidi & Fariba Karimi & Haiko Lietz & Claudia Wagner, 2018. "Gender Disparities In Science? Dropout, Productivity, Collaborations And Success Of Male And Female Computer Scientists," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(03n04), pages 1-23, May.
    2. Jian Wang & Kaspars Berzins & Diana Hicks & Julia Melkers & Fang Xiao & Diogo Pinheiro, 2012. "A boosted-trees method for name disambiguation," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(2), pages 391-411, November.
    3. Jinseok Kim & Jenna Kim, 2018. "The impact of imbalanced training data on machine learning for author name disambiguation," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 511-526, October.
    4. Dongwook Shin & Taehwan Kim & Joongmin Choi & Jungsun Kim, 2014. "Author name disambiguation using a graph model with node splitting and merging based on bibliographic information," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(1), pages 15-50, July.
    5. Milojević, Staša, 2013. "Accuracy of simple, initials-based methods for author name disambiguation," Journal of Informetrics, Elsevier, vol. 7(4), pages 767-773.
    6. Andreas Strotmann & Dangzhi Zhao, 2012. "Author name disambiguation: What difference does it make in author-based citation analysis?," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(9), pages 1820-1833, September.
    7. Helena Mihaljević-Brandt & Lucía Santamaría & Marco Tullney, 2016. "The Effect of Gender in the Publication Patterns in Mathematics," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-23, October.
    8. Henk F. Moed & Gali Halevi, 2014. "A bibliometric approach to tracking international scientific migration," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(3), pages 1987-2001, December.
    9. Jinseok Kim & Jenna Kim, 2020. "Effect of forename string on author name disambiguation," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 71(7), pages 839-855, July.
    10. Mark-Christoph Müller & Florian Reitz & Nicolas Roy, 2017. "Data sets for author name disambiguation: an empirical analysis and a new resource," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1467-1500, June.
    11. Andreas Strotmann & Dangzhi Zhao, 2012. "Author name disambiguation: What difference does it make in author‐based citation analysis?," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(9), pages 1820-1833, September.
    12. Jia Hou Chin & Kuru Ratnavelu, 2016. "Detecting Community Structure by Using a Constrained Label Propagation Algorithm," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-21, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li Zhang & Wei Lu & Jinqing Yang, 2023. "LAGOS‐AND: A large gold standard dataset for scholarly author name disambiguation," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(2), pages 168-185, February.
    2. Xinyuan Zhang & Qing Xie & Chaemin Song & Min Song, 2022. "Mining the evolutionary process of knowledge through multiple relationships between keywords," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(4), pages 2023-2053, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinseok Kim & Jinmo Kim & Jason Owen-Smith, 2019. "Generating automatically labeled data for author name disambiguation: an iterative clustering method," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 253-280, January.
    2. Jinseok Kim & Jenna Kim & Jason Owen‐Smith, 2021. "Ethnicity‐based name partitioning for author name disambiguation using supervised machine learning," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(8), pages 979-994, August.
    3. Jinseok Kim & Jason Owen-Smith, 2021. "ORCID-linked labeled data for evaluating author name disambiguation at scale," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 2057-2083, March.
    4. Jinseok Kim, 2019. "A fast and integrative algorithm for clustering performance evaluation in author name disambiguation," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(2), pages 661-681, August.
    5. Jinseok Kim, 2018. "Evaluating author name disambiguation for digital libraries: a case of DBLP," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1867-1886, September.
    6. Rehs, Andreas, 2021. "A supervised machine learning approach to author disambiguation in the Web of Science," Journal of Informetrics, Elsevier, vol. 15(3).
    7. Kim, Jinseok & Diesner, Jana, 2015. "The effect of data pre-processing on understanding the evolution of collaboration networks," Journal of Informetrics, Elsevier, vol. 9(1), pages 226-236.
    8. Jinseok Kim & Jenna Kim, 2020. "Effect of forename string on author name disambiguation," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 71(7), pages 839-855, July.
    9. Ciriaco Andrea D’Angelo & Nees Jan Eck, 2020. "Collecting large-scale publication data at the level of individual researchers: a practical proposal for author name disambiguation," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(2), pages 883-907, May.
    10. Jinseok Kim & Jenna Kim, 2018. "The impact of imbalanced training data on machine learning for author name disambiguation," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 511-526, October.
    11. Hao Wu & Bo Li & Yijian Pei & Jun He, 2014. "Unsupervised author disambiguation using Dempster–Shafer theory," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(3), pages 1955-1972, December.
    12. Humaira Waqas & Muhammad Abdul Qadir, 2021. "Multilayer heuristics based clustering framework (MHCF) for author name disambiguation," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7637-7678, September.
    13. Anne-Wil Harzing, 2015. "Health warning: might contain multiple personalities—the problem of homonyms in Thomson Reuters Essential Science Indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 2259-2270, December.
    14. Song, Min & Kim, Erin Hea-Jin & Kim, Ha Jin, 2015. "Exploring author name disambiguation on PubMed-scale," Journal of Informetrics, Elsevier, vol. 9(4), pages 924-941.
    15. Cornelius J. König & Clemens B. Fell & Linus Kellnhofer & Gabriel Schui, 2015. "Are there gender differences among researchers from industrial/organizational psychology?," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1931-1952, December.
    16. Maxim Kotsemir & Sergey Shashnov, 2017. "Measuring, analysis and visualization of research capacity of university at the level of departments and staff members," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1659-1689, September.
    17. Hirotaka Kawashima & Hiroyuki Tomizawa, 2015. "Accuracy evaluation of Scopus Author ID based on the largest funding database in Japan," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(3), pages 1061-1071, June.
    18. KM. Pooja & Samrat Mondal & Joydeep Chandra, 2021. "Exploiting similarities across multiple dimensions for author name disambiguation," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7525-7560, September.
    19. Mike Thelwall, 2020. "Mid-career field switches reduce gender disparities in academic publishing," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(3), pages 1365-1383, June.
    20. Chengliang Wang & Xiaojiao Chen & Teng Yu & Yidan Liu & Yuhui Jing, 2024. "Education reform and change driven by digital technology: a bibliometric study from a global perspective," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:126:y:2021:i:5:d:10.1007_s11192-021-03951-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.