IDEAS home Printed from https://ideas.repec.org/a/bla/jfnres/v3y1980i1p85-90.html
   My bibliography  Save this article

Bayesian Betas And Deception: A Comment

Author

Listed:
  • Christopher B. Barry

Abstract

No abstract is available for this item.

Suggested Citation

  • Christopher B. Barry, 1980. "Bayesian Betas And Deception: A Comment," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 3(1), pages 85-90, March.
  • Handle: RePEc:bla:jfnres:v:3:y:1980:i:1:p:85-90
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1475-6803.1980.tb00039.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexander H. Sarris, 1973. "A Bayesian Approach To Estimation Of Time-Varying Regression Coefficients," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 2, number 4, pages 501-523, National Bureau of Economic Research, Inc.
    2. Vasicek, Oldrich A, 1973. "A Note on Using Cross-Sectional Information in Bayesian Estimation of Security Betas," Journal of Finance, American Finance Association, vol. 28(5), pages 1233-1239, December.
    3. Rosenberg, Barr & McKibben, Walt, 1973. "The Prediction of Systematic and Specific Risk in Common Stocks," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 8(2), pages 317-333, March.
    4. Dana J. Johnson & Richard E. Bennett & Richard J. Curcio, 1979. "A Note On The Deceptive Nature Of Bayesian Forecasted Betas," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 2(1), pages 65-69, March.
    5. Barr Rosenberg, 1973. "A Survey of Stochastic Parameter Regression," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 2, number 4, pages 381-397, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin R. Young & Peter J. Lenk, 1998. "Hierarchical Bayes Methods for Multifactor Model Estimation and Portfolio Selection," Management Science, INFORMS, vol. 44(11-Part-2), pages 111-124, November.
    2. Cho, Thummim, 2018. "Turning alphas into betas: arbitrage and the cross-section of risk," LSE Research Online Documents on Economics 118915, London School of Economics and Political Science, LSE Library.
    3. Bill McDonald & William D. Nichols, 1984. "Nonstationarity Of Beta And Tests Of Market Efficiency," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 7(4), pages 315-322, December.
    4. Calcagno, R. & Renneboog, L.D.R., 2004. "Capital Structure and Managerial Compensation : The Effects of Renumeration Seniority," Discussion Paper 2004-120, Tilburg University, Center for Economic Research.
    5. Marc Goergen & Luc Renneboog, 2004. "Shareholder Wealth Effects of European Domestic and Cross‐border Takeover Bids," European Financial Management, European Financial Management Association, vol. 10(1), pages 9-45, March.
    6. Francesco Busato & Cuono Massimo Coletta & Maria Manganiello, 2019. "Estimating the Cost of Equity Capital: Forecasting Accuracy for U.S. REIT Sector," International Real Estate Review, Asian Real Estate Society, vol. 22(3), pages 401-432.
    7. Gabriel A. Hawawini & Ashok Vora, 1982. "Investment Horizon, Diversification, And The Efficiency Of Alternative Beta Forecasts," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 5(1), pages 1-15, March.
    8. Dana J. Johnson & Richard E. Bennett & Richard J. Curcio, 1979. "A Note On The Deceptive Nature Of Bayesian Forecasted Betas," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 2(1), pages 65-69, March.
    9. N. Groenewold & P. Fraser, 1999. "Forecasting Beta: How well does the 'five year rule of thumb' do?," Economics Discussion / Working Papers 99-01, The University of Western Australia, Department of Economics.
    10. Syarifah Inayati & Nur Iriawan & Irhamah, 2024. "A Markov Switching Autoregressive Model with Time-Varying Parameters," Forecasting, MDPI, vol. 6(3), pages 1-23, July.
    11. Jon Poynter & James Winder & Tzu Tai, 2015. "An analysis of co-movements in industrial sector indices over the last 30 years," Review of Quantitative Finance and Accounting, Springer, vol. 44(1), pages 69-88, January.
    12. Annaert, Jan & Mensah, Lord, 2014. "Cross-sectional predictability of stock returns, evidence from the 19th century Brussels Stock Exchange (1873–1914)," Explorations in Economic History, Elsevier, vol. 52(C), pages 22-43.
    13. Jones, Christopher S. & Shanken, Jay, 2005. "Mutual fund performance with learning across funds," Journal of Financial Economics, Elsevier, vol. 78(3), pages 507-552, December.
    14. Manfred Gilli & Enrico Schumann, 2012. "Heuristic optimisation in financial modelling," Annals of Operations Research, Springer, vol. 193(1), pages 129-158, March.
    15. Asness, Cliff & Frazzini, Andrea & Gormsen, Niels Joachim & Pedersen, Lasse Heje, 2020. "Betting against correlation: Testing theories of the low-risk effect," Journal of Financial Economics, Elsevier, vol. 135(3), pages 629-652.
    16. Lin, Boqiang & Bai, Rui, 2021. "Oil prices and economic policy uncertainty: Evidence from global, oil importers, and exporters’ perspective," Research in International Business and Finance, Elsevier, vol. 56(C).
    17. Bessler, Wolfgang & Leonhardt, Alexander & Wolff, Dominik, 2016. "Analyzing hedging strategies for fixed income portfolios: A Bayesian approach for model selection," International Review of Financial Analysis, Elsevier, vol. 46(C), pages 239-256.
    18. Delle Monache, Davide & Petrella, Ivan, 2017. "Adaptive models and heavy tails with an application to inflation forecasting," International Journal of Forecasting, Elsevier, vol. 33(2), pages 482-501.
    19. Ray Ball & Gil Sadka & Ayung Tseng, 2022. "Using accounting earnings and aggregate economic indicators to estimate firm-level systematic risk," Review of Accounting Studies, Springer, vol. 27(2), pages 607-646, June.
    20. A. D. Castagna & Z. P. Matolcsy, 1978. "The Relationship Between Accounting Variables and Systematic Risk and the Prediction of Systematic Risk," Australian Journal of Management, Australian School of Business, vol. 3(2), pages 113-126, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jfnres:v:3:y:1980:i:1:p:85-90. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/sfaaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.