IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v84y2016i3p359-362.html
   My bibliography  Save this article

Discussion

Author

Listed:
  • Luke B. Smith

Abstract

No abstract is available for this item.

Suggested Citation

  • Luke B. Smith, 2016. "Discussion," International Statistical Review, International Statistical Institute, vol. 84(3), pages 359-362, December.
  • Handle: RePEc:bla:istatr:v:84:y:2016:i:3:p:359-362
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/insr.12165
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Howard D. Bondell & Brian J. Reich & Huixia Wang, 2010. "Noncrossing quantile regression curve estimation," Biometrika, Biometrika Trust, vol. 97(4), pages 825-838.
    2. Brian J. Reich & Luke B. Smith, 2013. "Bayesian Quantile Regression for Censored Data," Biometrics, The International Biometric Society, vol. 69(3), pages 651-660, September.
    3. Athanasios Kottas & Milovan Krnjajić, 2009. "Bayesian Semiparametric Modelling in Quantile Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(2), pages 297-319, June.
    4. Luke B. Smith & Brian J. Reich & Amy H. Herring & Peter H. Langlois & Montserrat Fuentes, 2015. "Multilevel quantile function modeling with application to birth outcomes," Biometrics, The International Biometric Society, vol. 71(2), pages 508-519, June.
    5. Yu, Keming & Moyeed, Rana A., 2001. "Bayesian quantile regression," Statistics & Probability Letters, Elsevier, vol. 54(4), pages 437-447, October.
    6. Reich, Brian J. & Fuentes, Montserrat & Dunson, David B., 2011. "Bayesian Spatial Quantile Regression," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 6-20.
    7. Yunwen Yang & Huixia Judy Wang & Xuming He, 2016. "Posterior Inference in Bayesian Quantile Regression with Asymmetric Laplace Likelihood," International Statistical Review, International Statistical Institute, vol. 84(3), pages 327-344, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Das, Priyam & Ghosal, Subhashis, 2017. "Bayesian quantile regression using random B-spline series prior," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 121-143.
    2. Das, Priyam & Ghosal, Subhashis, 2018. "Bayesian non-parametric simultaneous quantile regression for complete and grid data," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 172-186.
    3. Rodrigues, T. & Dortet-Bernadet, J.-L. & Fan, Y., 2019. "Simultaneous fitting of Bayesian penalised quantile splines," Computational Statistics & Data Analysis, Elsevier, vol. 134(C), pages 93-109.
    4. Fabrizi, Enrico & Salvati, Nicola & Trivisano, Carlo, 2020. "Robust Bayesian small area estimation based on quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
    5. Yingying Hu & Huixia Judy Wang & Xuming He & Jianhua Guo, 2021. "Bayesian joint-quantile regression," Computational Statistics, Springer, vol. 36(3), pages 2033-2053, September.
    6. Luke B. Smith & Brian J. Reich & Amy H. Herring & Peter H. Langlois & Montserrat Fuentes, 2015. "Multilevel quantile function modeling with application to birth outcomes," Biometrics, The International Biometric Society, vol. 71(2), pages 508-519, June.
    7. Bernardi, Mauro & Bottone, Marco & Petrella, Lea, 2018. "Bayesian quantile regression using the skew exponential power distribution," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 92-111.
    8. Yunwen Yang & Huixia Judy Wang & Xuming He, 2016. "Posterior Inference in Bayesian Quantile Regression with Asymmetric Laplace Likelihood," International Statistical Review, International Statistical Institute, vol. 84(3), pages 327-344, December.
    9. Yun Yang & Surya T. Tokdar, 2017. "Joint Estimation of Quantile Planes Over Arbitrary Predictor Spaces," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1107-1120, July.
    10. A Ford Ramsey, 2020. "Probability Distributions of Crop Yields: A Bayesian Spatial Quantile Regression Approach," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(1), pages 220-239, January.
    11. Henry R. Scharf & Xinyi Lu & Perry J. Williams & Mevin B. Hooten, 2022. "Constructing Flexible, Identifiable and Interpretable Statistical Models for Binary Data," International Statistical Review, International Statistical Institute, vol. 90(2), pages 328-345, August.
    12. Peter Congdon, 2017. "Quantile regression for overdispersed count data: a hierarchical method," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-19, December.
    13. Bhattacharya, Indrabati & Ghosal, Subhashis, 2021. "Bayesian multivariate quantile regression using Dependent Dirichlet Process prior," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    14. Pai, Jeffrey & Li, Yunxian & Yang, Aijun & Li, Chenxu, 2022. "Earthquake parametric insurance with Bayesian spatial quantile regression," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 1-12.
    15. Weihua Zhao & Jianbo Li & Heng Lian, 2018. "Adaptive varying-coefficient linear quantile model: a profiled estimating equations approach," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(3), pages 553-582, June.
    16. Brian J. Reich & Luke B. Smith, 2013. "Bayesian Quantile Regression for Censored Data," Biometrics, The International Biometric Society, vol. 69(3), pages 651-660, September.
    17. Steven G. Xu & Brian J. Reich, 2023. "Bayesian nonparametric quantile process regression and estimation of marginal quantile effects," Biometrics, The International Biometric Society, vol. 79(1), pages 151-164, March.
    18. Tsionas, Mike G., 2020. "Quantile Stochastic Frontiers," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1177-1184.
    19. Marco Bottone & Lea Petrella & Mauro Bernardi, 2021. "Unified Bayesian conditional autoregressive risk measures using the skew exponential power distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 1079-1107, September.
    20. Yuzhu Tian & Er’qian Li & Maozai Tian, 2016. "Bayesian joint quantile regression for mixed effects models with censoring and errors in covariates," Computational Statistics, Springer, vol. 31(3), pages 1031-1057, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:84:y:2016:i:3:p:359-362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.