IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v79y2009i5p652-658.html
   My bibliography  Save this article

Large-sample confidence intervals for the treatment difference in a two-period crossover trial, utilizing prior information

Author

Listed:
  • Kabaila, Paul
  • Giri, Khageswor

Abstract

Consider a two-treatment, two-period crossover trial, with responses that are continuous random variables. We find a large-sample frequentist 1-[alpha] confidence interval for the treatment difference that utilizes the uncertain prior information that there is no differential carryover effect.

Suggested Citation

  • Kabaila, Paul & Giri, Khageswor, 2009. "Large-sample confidence intervals for the treatment difference in a two-period crossover trial, utilizing prior information," Statistics & Probability Letters, Elsevier, vol. 79(5), pages 652-658, March.
  • Handle: RePEc:eee:stapro:v:79:y:2009:i:5:p:652-658
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(08)00493-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Farchione, David & Kabaila, Paul, 2008. "Confidence intervals for the normal mean utilizing prior information," Statistics & Probability Letters, Elsevier, vol. 78(9), pages 1094-1100, July.
    2. Kabaila, Paul & Leeb, Hannes, 2006. "On the Large-Sample Minimal Coverage Probability of Confidence Intervals After Model Selection," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 619-629, June.
    3. Kabaila, Paul, 1998. "Valid Confidence Intervals In Regression After Variable Selection," Econometric Theory, Cambridge University Press, vol. 14(4), pages 463-482, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kabaila, Paul, 2013. "Note on a paradox in decision-theoretic interval estimation," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 123-126.
    2. Paul Kabaila, 2009. "The Coverage Properties of Confidence Regions After Model Selection," International Statistical Review, International Statistical Institute, vol. 77(3), pages 405-414, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Kabaila, 2009. "The Coverage Properties of Confidence Regions After Model Selection," International Statistical Review, International Statistical Institute, vol. 77(3), pages 405-414, December.
    2. Leeb, Hannes & Pötscher, Benedikt M. & Ewald, Karl, 2014. "On various confidence intervals post-model-selection," MPRA Paper 52858, University Library of Munich, Germany.
    3. Francis J. DiTraglia, 2011. "Using Invalid Instruments on Purpose: Focused Moment Selection and Averaging for GMM, Second Version," PIER Working Paper Archive 14-045, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 09 Dec 2014.
    4. DiTraglia, Francis J., 2016. "Using invalid instruments on purpose: Focused moment selection and averaging for GMM," Journal of Econometrics, Elsevier, vol. 195(2), pages 187-208.
    5. Francis DiTraglia, 2011. "Using Invalid Instruments on Purpose: Focused Moment Selection and Averaging for GMM, Second Version," PIER Working Paper Archive 15-027, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 10 Aug 2015.
    6. Pötscher, Benedikt M., 2007. "Confidence Sets Based on Sparse Estimators Are Necessarily Large," MPRA Paper 5677, University Library of Munich, Germany.
    7. Ali Charkhi & Gerda Claeskens, 2018. "Asymptotic post-selection inference for the Akaike information criterion," Biometrika, Biometrika Trust, vol. 105(3), pages 645-664.
    8. Kabaila, Paul, 2011. "Admissibility of the usual confidence interval for the normal mean," Statistics & Probability Letters, Elsevier, vol. 81(3), pages 352-359, March.
    9. Shaobo Jin, 2022. "Frequentist Model Averaging in Structure Equation Model With Ordinal Data," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 1130-1145, September.
    10. Leeb, Hannes & Pötscher, Benedikt M., 2012. "Testing in the Presence of Nuisance Parameters: Some Comments on Tests Post-Model-Selection and Random Critical Values," MPRA Paper 41459, University Library of Munich, Germany.
    11. Romano, Joseph P. & Shaikh, Azeem M. & Wolf, Michael, 2008. "Formalized Data Snooping Based On Generalized Error Rates," Econometric Theory, Cambridge University Press, vol. 24(2), pages 404-447, April.
    12. Kabaila, Paul, 2013. "Note on a paradox in decision-theoretic interval estimation," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 123-126.
    13. Paul Kabaila & A. H. Welsh & Waruni Abeysekera, 2016. "Model-Averaged Confidence Intervals," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 35-48, March.
    14. Bachoc, Francois & Leeb, Hannes & Pötscher, Benedikt M., 2014. "Valid confidence intervals for post-model-selection predictors," MPRA Paper 60643, University Library of Munich, Germany.
    15. Shaobo Jin & Sebastian Ankargren, 2019. "Frequentist Model Averaging in Structural Equation Modelling," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 84-104, March.
    16. Farchione, David & Kabaila, Paul, 2008. "Confidence intervals for the normal mean utilizing prior information," Statistics & Probability Letters, Elsevier, vol. 78(9), pages 1094-1100, July.
    17. Giuseppe Luca & Jan R. Magnus & Franco Peracchi, 2023. "Weighted-Average Least Squares (WALS): Confidence and Prediction Intervals," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1637-1664, April.
    18. McCloskey, Adam, 2017. "Bonferroni-based size-correction for nonstandard testing problems," Journal of Econometrics, Elsevier, vol. 200(1), pages 17-35.
    19. Liu, Chu-An, 2015. "Distribution theory of the least squares averaging estimator," Journal of Econometrics, Elsevier, vol. 186(1), pages 142-159.
    20. Paul Kabaila & Nishika Ranathunga, 2021. "Computation of the expected value of a function of a chi-distributed random variable," Computational Statistics, Springer, vol. 36(1), pages 313-332, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:79:y:2009:i:5:p:652-658. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.