IDEAS home Printed from https://ideas.repec.org/a/prg/jnlefa/v2012y2012i1id12p6-27.html
   My bibliography  Save this article

Survival Analysis in LGD Modeling

Author

Listed:
  • Jiří Witzany
  • Michal Rychnovský
  • Pavel Charamza

Abstract

The paper proposes an application of the survival time analysis methodology to estimations of the Loss Given Default (LGD) parameter. The main advantage of the survival analysis approach compared to classical regression methods is that it allows exploiting partial recovery data. The model is also modified in order to improve performance of the appropriate goodness of fit measures. The empirical testing shows that the Cox proportional model applied to LGD modeling performs better than the linear and logistic regressions. In addition a significant improvement is achieved with the modified "pseudo" Cox LGD model

Suggested Citation

  • Jiří Witzany & Michal Rychnovský & Pavel Charamza, 2012. "Survival Analysis in LGD Modeling," European Financial and Accounting Journal, Prague University of Economics and Business, vol. 2012(1), pages 6-27.
  • Handle: RePEc:prg:jnlefa:v:2012:y:2012:i:1:id:12:p:6-27
    DOI: 10.18267/j.efaj.12
    as

    Download full text from publisher

    File URL: http://efaj.vse.cz/doi/10.18267/j.efaj.12.html
    Download Restriction: free of charge

    File URL: http://efaj.vse.cz/doi/10.18267/j.efaj.12.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.18267/j.efaj.12?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. repec:bla:ecnote:v:33:y:2004:i:2:p:183-208 is not listed on IDEAS
    2. G Andreeva, 2006. "European generic scoring models using survival analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(10), pages 1180-1187, October.
    3. Jiří Witzany, 2009. "Unexpected Recovery Risk and LGD Discount Rate Determination," European Financial and Accounting Journal, Prague University of Economics and Business, vol. 2009(1), pages 61-84.
    4. Greg M. Gupton, 2005. "Advancing Loss Given Default Prediction Models: How the Quiet Have Quickened," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 34(2), pages 185-230, July.
    5. Sudheer Chava & Catalina Stefanescu & Stuart Turnbull, 2011. "Modeling the Loss Distribution," Management Science, INFORMS, vol. 57(7), pages 1267-1287, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jennifer Betz & Ralf Kellner & Daniel Rösch, 2021. "Time matters: How default resolution times impact final loss rates," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 619-644, June.
    2. Matuszyk, Anna & So, Mee Chi & Mues, Christophe & Moore, Angela, 2016. "Modelling repayment patterns in the collections process for unsecured consumer debt: A case studyAuthor-Name: Thomas, Lyn C," European Journal of Operational Research, Elsevier, vol. 249(2), pages 476-486.
    3. Cheng, Dan & Cirillo, Pasquale, 2018. "A reinforced urn process modeling of recovery rates and recovery times," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 1-17.
    4. Jiří Witzany & Anastasiia Kozina, 2022. "Recovery process optimization using survival regression," Operational Research, Springer, vol. 22(5), pages 5269-5296, November.
    5. Rumyantseva, Ekaterina & Furmanov, Kirill, 2017. "Realisation of mortgage property: Survival analysis," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 48, pages 22-43.
    6. Aneta Ptak-Chmielewska & Paweł Kopciuszewski & Anna Matuszyk, 2023. "Application of the kNN-Based Method and Survival Approach in Estimating Loss Given Default for Unresolved Cases," Risks, MDPI, vol. 11(2), pages 1-14, February.
    7. Morne Joubert & Tanja Verster & Helgard Raubenheimer & Willem D. Schutte, 2021. "Adapting the Default Weighted Survival Analysis Modelling Approach to Model IFRS 9 LGD," Risks, MDPI, vol. 9(6), pages 1-17, June.
    8. Joseph L. Breeden, 2024. "An Age–Period–Cohort Framework for Profit and Profit Volatility Modeling," Mathematics, MDPI, vol. 12(10), pages 1-23, May.
    9. Arno Botha & Tanja Verster & Roelinde Bester, 2024. "The TruEnd-procedure: Treating trailing zero-valued balances in credit data," Papers 2404.17008, arXiv.org, revised Nov 2024.
    10. Konstantin Belyaev & Aelita Belyaeva & Tomas Konecny & Jakub Seidler & Martin Vojtek, 2012. "Macroeconomic Factors as Drivers of LGD Prediction: Empirical Evidence from the Czech Republic," Working Papers 2012/12, Czech National Bank.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krüger, Steffen & Oehme, Toni & Rösch, Daniel & Scheule, Harald, 2018. "A copula sample selection model for predicting multi-year LGDs and Lifetime Expected Losses," Journal of Empirical Finance, Elsevier, vol. 47(C), pages 246-262.
    2. Ruey-Ching Hwang, 2013. "Forecasting credit ratings with the varying-coefficient model," Quantitative Finance, Taylor & Francis Journals, vol. 13(12), pages 1947-1965, December.
    3. Thamayanthi Chellathurai, 2017. "Probability Density Of Recovery Rate Given Default Of A Firm’S Debt And Its Constituent Tranches," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(04), pages 1-34, June.
    4. Ruey-Ching Hwang & Huimin Chung & Jiun-Yi Ku, 2013. "Predicting Recurrent Financial Distresses with Autocorrelation Structure: An Empirical Analysis from an Emerging Market," Journal of Financial Services Research, Springer;Western Finance Association, vol. 43(3), pages 321-341, June.
    5. Hwang, Ruey-Ching & Chu, Chih-Kang & Yu, Kaizhi, 2020. "Predicting LGD distributions with mixed continuous and discrete ordinal outcomes," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1003-1022.
    6. Andreas Muhlbacher & Thomas Guhr, 2018. "Credit Risk Meets Random Matrices: Coping with Non-Stationary Asset Correlations," Papers 1803.00261, arXiv.org.
    7. Dirick, Lore & Claeskens, Gerda & Vasnev, Andrey & Baesens, Bart, 2022. "A hierarchical mixture cure model with unobserved heterogeneity for credit risk," Econometrics and Statistics, Elsevier, vol. 22(C), pages 39-55.
    8. Mora, Nada, 2015. "Creditor recovery: The macroeconomic dependence of industry equilibrium," Journal of Financial Stability, Elsevier, vol. 18(C), pages 172-186.
    9. Wu, Yang-Che & Chung, San-Lin, 2010. "Catastrophe risk management with counterparty risk using alternative instruments," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 234-245, October.
    10. Joachim Sicking & Thomas Guhr & Rudi Schäfer, 2018. "Concurrent credit portfolio losses," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-20, February.
    11. Jean-David Fermanian, 2020. "On the Dependence between Default Risk and Recovery Rates in Structural Models," Annals of Economics and Statistics, GENES, issue 140, pages 45-82.
    12. Bellotti, Tony & Crook, Jonathan, 2013. "Forecasting and stress testing credit card default using dynamic models," International Journal of Forecasting, Elsevier, vol. 29(4), pages 563-574.
    13. Bruche, Max & González-Aguado, Carlos, 2010. "Recovery rates, default probabilities, and the credit cycle," Journal of Banking & Finance, Elsevier, vol. 34(4), pages 754-764, April.
    14. T Bellotti & J Crook, 2009. "Credit scoring with macroeconomic variables using survival analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1699-1707, December.
    15. Campello, Murillo & Gao, Janet, 2017. "Customer concentration and loan contract terms," Journal of Financial Economics, Elsevier, vol. 123(1), pages 108-136.
    16. Maria Stefanova, 2012. "Recovery Risiko in der Kreditportfoliomodellierung," Springer Books, Springer, number 978-3-8349-4226-5, December.
    17. Andreeva, Galina & Ansell, Jake & Crook, Jonathan, 2007. "Modelling profitability using survival combination scores," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1537-1549, December.
    18. Baghdadi, Ghasan A. & Nguyen, Lily H.G. & Podolski, Edward J., 2020. "Board co-option and default risk," Journal of Corporate Finance, Elsevier, vol. 64(C).
    19. Alexander Becker & Alexander F. R. Koivusalo & Rudi Schafer, 2012. "Empirical Evidence for the Structural Recovery Model," Papers 1203.3188, arXiv.org.
    20. Lando, David & Nielsen, Mads Stenbo, 2010. "Correlation in corporate defaults: Contagion or conditional independence?," Journal of Financial Intermediation, Elsevier, vol. 19(3), pages 355-372, July.

    More about this item

    Keywords

    Correlation; Credit risk; Loss given default; Recovery rate; Regulatory capital;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • G28 - Financial Economics - - Financial Institutions and Services - - - Government Policy and Regulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:prg:jnlefa:v:2012:y:2012:i:1:id:12:p:6-27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stanislav Vojir (email available below). General contact details of provider: https://edirc.repec.org/data/uevsecz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.