Penalized survival models for the analysis of alternating recurrent event data
Author
Abstract
Suggested Citation
DOI: 10.1111/biom.13153
Download full text from publisher
References listed on IDEAS
- D. Y. Lin & L. J. Wei & I. Yang & Z. Ying, 2000. "Semiparametric regression for the mean and rate functions of recurrent events," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 711-730.
- Xuelin Huang & Lei Liu, 2007. "A Joint Frailty Model for Survival and Gap Times Between Recurrent Events," Biometrics, The International Biometric Society, vol. 63(2), pages 389-397, June.
- Samuli Ripatti & Juni Palmgren, 2000. "Estimation of Multivariate Frailty Models Using Penalized Partial Likelihood," Biometrics, The International Biometric Society, vol. 56(4), pages 1016-1022, December.
- Sai H. Dharmarajan & Douglas E. Schaubel & Rajiv Saran, 2018. "Evaluating center performance in the competing risks setting: Application to outcomes of wait†listed end†stage renal disease patients," Biometrics, The International Biometric Society, vol. 74(1), pages 289-299, March.
- Chiung-Yu Huang & Mei-Cheng Wang, 2005. "Nonparametric Estimation of the Bivariate Recurrence Time Distribution," Biometrics, The International Biometric Society, vol. 61(2), pages 392-402, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Benny Ren & Ian Barnett, 2023. "Combining mixed effects hidden Markov models with latent alternating recurrent event processes to model diurnal active–rest cycles," Biometrics, The International Biometric Society, vol. 79(4), pages 3402-3417, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- P. G. Sankaran & P. Anisha, 2011. "Shared frailty model for recurrent event data with multiple causes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(12), pages 2859-2868, February.
- Yassin Mazroui & Audrey Mauguen & Simone Mathoulin-Pélissier & Gaetan MacGrogan & Véronique Brouste & Virginie Rondeau, 2016. "Time-varying coefficients in a multivariate frailty model: Application to breast cancer recurrences of several types and death," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(2), pages 191-215, April.
- Zhao, Xiaobing & Zhou, Xian, 2014. "Sufficient dimension reduction on marginal regression for gaps of recurrent events," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 56-71.
- C.-Y. Huang & J. Qin & M.-C. Wang, 2010. "Semiparametric Analysis for Recurrent Event Data with Time-Dependent Covariates and Informative Censoring," Biometrics, The International Biometric Society, vol. 66(1), pages 39-49, March.
- Dongxiao Han & Xiaogang Su & Liuquan Sun & Zhou Zhang & Lei Liu, 2020. "Variable selection in joint frailty models of recurrent and terminal events," Biometrics, The International Biometric Society, vol. 76(4), pages 1330-1339, December.
- Shen, Pao-sheng, 2015. "The inverse probability weighted estimators for distribution functions of the bivariate recurrent events," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 91-99.
- Kang, Fangyuan & Sun, Liuquan & Zhao, Xingqiu, 2015. "A class of transformed hazards models for recurrent gap times," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 151-167.
- Hong Zhu, 2014. "Non-parametric Analysis of Gap Times for Multiple Event Data: An Overview," International Statistical Review, International Statistical Institute, vol. 82(1), pages 106-122, April.
- Laura M. Yee & Kwun Chuen Gary Chan, 2017. "Nonparametric inference for the joint distribution of recurrent marked variables and recurrent survival time," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(2), pages 207-222, April.
- Jieli Ding & Liuquan Sun, 2017. "Additive mixed effect model for recurrent gap time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(2), pages 223-253, April.
- V. N. Sreeja & P. G. Sankaran, 2007. "Proportional mean residual life model for gap time distributions of recurrent events," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 319-336.
- Richard Tawiah & Geoffrey J. McLachlan & Shu Kay Ng, 2020. "A bivariate joint frailty model with mixture framework for survival analysis of recurrent events with dependent censoring and cure fraction," Biometrics, The International Biometric Society, vol. 76(3), pages 753-766, September.
- D. Y. Lin, 2000. "Proportional Means Regression for Censored Medical Costs," Biometrics, The International Biometric Society, vol. 56(3), pages 775-778, September.
- Xianghua Luo & Chiung-Yu Huang & Lan Wang, 2013. "Quantile Regression for Recurrent Gap Time Data," Biometrics, The International Biometric Society, vol. 69(2), pages 375-385, June.
- Na Cai & Wenbin Lu & Hao Helen Zhang, 2012. "Time-Varying Latent Effect Model for Longitudinal Data with Informative Observation Times," Biometrics, The International Biometric Society, vol. 68(4), pages 1093-1102, December.
- Julie K. Furberg & Per K. Andersen & Sofie Korn & Morten Overgaard & Henrik Ravn, 2023. "Bivariate pseudo-observations for recurrent event analysis with terminal events," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 256-287, April.
- Il Do Ha & Maengseok Noh & Youngjo Lee, 2010. "Bias Reduction of Likelihood Estimators in Semiparametric Frailty Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(2), pages 307-320, June.
- Francisco Louzada & M�rcia A.C. Macera & Vicente G. Cancho, 2015. "The Poisson-exponential model for recurrent event data: an application to bowel motility data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(11), pages 2353-2366, November.
- Sundaram Rajeshwari & Ma Ling & Ghoshal Subhashis, 2017. "Median Analysis of Repeated Measures Associated with Recurrent Events in Presence of Terminal Event," The International Journal of Biostatistics, De Gruyter, vol. 13(1), pages 1-16, May.
- Yang-Jin Kim, 2014. "Regression analysis of recurrent events data with incomplete observation gaps," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(7), pages 1619-1626, July.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:76:y:2020:i:2:p:448-459. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.