IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i4p2998-3009.html
   My bibliography  Save this article

Identifying and estimating effects of sustained interventions under parallel trends assumptions

Author

Listed:
  • Audrey Renson
  • Michael G. Hudgens
  • Alexander P. Keil
  • Paul N. Zivich
  • Allison E. Aiello

Abstract

Many research questions in public health and medicine concern sustained interventions in populations defined by substantive priorities. Existing methods to answer such questions typically require a measured covariate set sufficient to control confounding, which can be questionable in observational studies. Differences‐in‐differences rely instead on the parallel trends assumption, allowing for some types of time‐invariant unmeasured confounding. However, most existing difference‐in‐differences implementations are limited to point treatments in restricted subpopulations. We derive identification results for population effects of sustained treatments under parallel trends assumptions. In particular, in settings where all individuals begin follow‐up with exposure status consistent with the treatment plan of interest but may deviate at later times, a version of Robins' g‐formula identifies the intervention‐specific mean under stable unit treatment value assumption, positivity, and parallel trends. We develop consistent asymptotically normal estimators based on inverse‐probability weighting, outcome regression, and a double robust estimator based on targeted maximum likelihood. Simulation studies confirm theoretical results and support the use of the proposed estimators at realistic sample sizes. As an example, the methods are used to estimate the effect of a hypothetical federal stay‐at‐home order on all‐cause mortality during the COVID‐19 pandemic in spring 2020 in the United States.

Suggested Citation

  • Audrey Renson & Michael G. Hudgens & Alexander P. Keil & Paul N. Zivich & Allison E. Aiello, 2023. "Identifying and estimating effects of sustained interventions under parallel trends assumptions," Biometrics, The International Biometric Society, vol. 79(4), pages 2998-3009, December.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:4:p:2998-3009
    DOI: 10.1111/biom.13862
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13862
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13862?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Callaway, Brantly & Sant’Anna, Pedro H.C., 2021. "Difference-in-Differences with multiple time periods," Journal of Econometrics, Elsevier, vol. 225(2), pages 200-230.
    2. Ashenfelter, Orley & Card, David, 1985. "Using the Longitudinal Structure of Earnings to Estimate the Effect of Training Programs," The Review of Economics and Statistics, MIT Press, vol. 67(4), pages 648-660, November.
    3. Peter Diggle & Daniel Farewell & Robin Henderson, 2007. "Analysis of longitudinal data with drop‐out: objectives, assumptions and a proposal," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 56(5), pages 499-550, November.
    4. Michelle Marcus & Pedro H. C. Sant’Anna, 2021. "The Role of Parallel Trends in Event Study Settings: An Application to Environmental Economics," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 8(2), pages 235-275.
    5. Tran Linh & Yiannoutsos Constantin & Wools-Kaloustian Kara & Siika Abraham & van der Laan Mark & Petersen Maya, 2019. "Double Robust Efficient Estimators of Longitudinal Treatment Effects: Comparative Performance in Simulations and a Case Study," The International Journal of Biostatistics, De Gruyter, vol. 15(2), pages 1-27, November.
    6. Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
    7. van der Laan Mark J. & Gruber Susan, 2012. "Targeted Minimum Loss Based Estimation of Causal Effects of Multiple Time Point Interventions," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-41, May.
    8. Tran Linh & Yiannoutsos Constantin & Wools-Kaloustian Kara & Siika Abraham & van der Laan Mark & Petersen Maya, 2019. "Double Robust Efficient Estimators of Longitudinal Treatment Effects: Comparative Performance in Simulations and a Case Study," The International Journal of Biostatistics, De Gruyter, vol. 15(2), pages 1-27, November.
    9. Gruber Susan & van der Laan Mark J., 2012. "Targeted Minimum Loss Based Estimation of a Causal Effect on an Outcome with Known Conditional Bounds," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-18, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philipp Baumann & Enzo Rossi & Michael Schomaker, 2022. "Estimating the effect of central bank independence on inflation using longitudinal targeted maximum likelihood estimation," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Machine learning in central banking, volume 57, Bank for International Settlements.
    2. Hugo Bodory & Martin Huber & Lukáš Lafférs, 2022. "Evaluating (weighted) dynamic treatment effects by double machine learning [Identification of causal effects using instrumental variables]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 628-648.
    3. Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
    4. Dalia Ghanem & Pedro H. C. Sant'Anna & Kaspar Wüthrich, 2022. "Selection and Parallel Trends," CESifo Working Paper Series 9910, CESifo.
    5. Victor Chernozhukov & Whitney K. Newey & Victor Quintas-Martinez & Vasilis Syrgkanis, 2021. "RieszNet and ForestRiesz: Automatic Debiased Machine Learning with Neural Nets and Random Forests," Papers 2110.03031, arXiv.org, revised Jun 2022.
    6. Susan Gruber & Mark J. van der Laan, 2013. "An Application of Targeted Maximum Likelihood Estimation to the Meta-Analysis of Safety Data," Biometrics, The International Biometric Society, vol. 69(1), pages 254-262, March.
    7. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
    8. Lan Wen & Jessica G. Young & James M. Robins & Miguel A. Hernán, 2021. "Parametric g‐formula implementations for causal survival analyses," Biometrics, The International Biometric Society, vol. 77(2), pages 740-753, June.
    9. Lina M. Montoya & Michael R. Kosorok & Elvin H. Geng & Joshua Schwab & Thomas A. Odeny & Maya L. Petersen, 2023. "Efficient and robust approaches for analysis of sequential multiple assignment randomized trials: Illustration using the ADAPT‐R trial," Biometrics, The International Biometric Society, vol. 79(3), pages 2577-2591, September.
    10. Matthew Blackwell & Anton Strezhnev, 2022. "Telescope matching for reducing model dependence in the estimation of the effects of time‐varying treatments: An application to negative advertising," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 377-399, January.
    11. Lan Wen & Miguel A. Hernán & James M. Robins, 2022. "Multiply robust estimators of causal effects for survival outcomes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1304-1328, September.
    12. Elena Kotyrlo & Hryhorii M. Kalachyhin, 2023. "The effects of India's bilateral investment treaties termination on foreign direct investment inflows," Economics of Transition and Institutional Change, John Wiley & Sons, vol. 31(4), pages 1007-1033, October.
    13. David Benkeser & Keith Horvath & Cathy J. Reback & Joshua Rusow & Michael Hudgens, 2020. "Design and Analysis Considerations for a Sequentially Randomized HIV Prevention Trial," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 446-467, December.
    14. Yuqian Zhang & Weijie Ji & Jelena Bradic, 2021. "Dynamic treatment effects: high-dimensional inference under model misspecification," Papers 2111.06818, arXiv.org, revised Jun 2023.
    15. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    16. Costa-Font, Joan & Jiménez-Martín, Sergi & Vilaplana-Prieto, Cristina, 2022. "Do Public Caregiving Subsidies and Supports affect the Provision of Care and Transfers?," Journal of Health Economics, Elsevier, vol. 84(C).
    17. Mounu Prem & Miguel Purroy & Juan F. Vargas, 2021. "Landmines: The local effects of demining," Documentos de Trabajo 19733, The Latin American and Caribbean Economic Association (LACEA).
    18. Brian J. Reich & Shu Yang & Yawen Guan & Andrew B. Giffin & Matthew J. Miller & Ana Rappold, 2021. "A Review of Spatial Causal Inference Methods for Environmental and Epidemiological Applications," International Statistical Review, International Statistical Institute, vol. 89(3), pages 605-634, December.
    19. Carter, Colin A. & Steinbach, Sandro & Zhuang, Xiting, 2022. "Global Shipping Container Disruptions and U.S. Agricultural Exports," Working Papers 320397, International Agricultural Trade Research Consortium.
    20. Roth, Jonathan & Sant’Anna, Pedro H.C. & Bilinski, Alyssa & Poe, John, 2023. "What’s trending in difference-in-differences? A synthesis of the recent econometrics literature," Journal of Econometrics, Elsevier, vol. 235(2), pages 2218-2244.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:4:p:2998-3009. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.