IDEAS home Printed from https://ideas.repec.org/p/osf/metaar/3qp2w_v1.html
   My bibliography  Save this paper

Spurious Precision in Meta-Analysis of Observational Research

Author

Listed:
  • Irsova, Zuzana
  • Bom, Pedro R. D.
  • Havranek, Tomas
  • Rachinger, Heiko

Abstract

Meta-analysis upweights studies reporting lower standard errors and hence more precision. But in observational settings common to much research in social sciences, precision is not given to the researcher. Precision must be estimated, and thus can be p-hacked to achieve statistical significance. Simulations and applications show that spurious precision can invalidate inverse-variance weighting and bias-correction methods based on the funnel plot. Selection models fail to solve the problem, and common cures to publication bias can become worse than the disease. We introduce a novel approach that addresses spuriousness: meta-analysis instrumental variable estimator (MAIVE).

Suggested Citation

  • Irsova, Zuzana & Bom, Pedro R. D. & Havranek, Tomas & Rachinger, Heiko, 2023. "Spurious Precision in Meta-Analysis of Observational Research," MetaArXiv 3qp2w_v1, Center for Open Science.
  • Handle: RePEc:osf:metaar:3qp2w_v1
    DOI: 10.31219/osf.io/3qp2w_v1
    as

    Download full text from publisher

    File URL: https://osf.io/download/63eddb12eeb8ff06af211bac/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/3qp2w_v1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Taisuke Imai & Tom A Rutter & Colin F Camerer, 2021. "Meta-Analysis of Present-Bias Estimation using Convex Time Budgets," The Economic Journal, Royal Economic Society, vol. 131(636), pages 1788-1814.
    2. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    3. Gechert, Sebastian & Heimberger, Philipp, 2022. "Do corporate tax cuts boost economic growth?," European Economic Review, Elsevier, vol. 147(C).
    4. Elizabeth Tipton & James E. Pustejovsky, 2015. "Small-Sample Adjustments for Tests of Moderators and Model Fit Using Robust Variance Estimation in Meta-Regression," Journal of Educational and Behavioral Statistics, , vol. 40(6), pages 604-634, December.
    5. T. D. Stanley, 2005. "Beyond Publication Bias," Journal of Economic Surveys, Wiley Blackwell, vol. 19(3), pages 309-345, July.
    6. J. B. Copas & H. G. Li, 1997. "Inference for Non‐random Samples," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(1), pages 55-95.
    7. Sue Duval & Richard Tweedie, 2000. "Trim and Fill: A Simple Funnel-Plot–Based Method of Testing and Adjusting for Publication Bias in Meta-Analysis," Biometrics, The International Biometric Society, vol. 56(2), pages 455-463, June.
    8. Carina Neisser, 2021. "The Elasticity of Taxable Income: A Meta-Regression Analysis [The top 1% in international and historical perspective]," The Economic Journal, Royal Economic Society, vol. 131(640), pages 3365-3391.
    9. Sebastian Gechert & Tomas Havranek & Zuzana Irsova & Dominika Kolcunova, 2022. "Measuring Capital-Labor Substitution: The Importance of Method Choices and Publication Bias," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 45, pages 55-82, July.
    10. Alexander L. Brown & Taisuke Imai & Ferdinand M. Vieider & Colin F. Camerer, 2024. "Meta-analysis of Empirical Estimates of Loss Aversion," Journal of Economic Literature, American Economic Association, vol. 62(2), pages 485-516, June.
    11. Tomáš Havránek, 2015. "Measuring Intertemporal Substitution: The Importance Of Method Choices And Selective Reporting," Journal of the European Economic Association, European Economic Association, vol. 13(6), pages 1180-1204, December.
    12. Alan B. Krueger, 1999. "Experimental Estimates of Education Production Functions," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(2), pages 497-532.
    13. Pedro R.D. Bom & Jenny E. Ligthart, 2014. "What Have We Learned From Three Decades Of Research On The Productivity Of Public Capital?," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 889-916, December.
    14. Jerry Hausman, 2001. "Mismeasured Variables in Econometric Analysis: Problems from the Right and Problems from the Left," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 57-67, Fall.
    15. Card, David & Krueger, Alan B, 1995. "Time-Series Minimum-Wage Studies: A Meta-analysis," American Economic Review, American Economic Association, vol. 85(2), pages 238-243, May.
    16. Alberto Abadie & Susan Athey & Guido W Imbens & Jeffrey M Wooldridge, 2023. "When Should You Adjust Standard Errors for Clustering?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 138(1), pages 1-35.
    17. Zohid Askarov & Anthony Doucouli & Hristos Doucouli & T D Stanley, 2023. "The Significance of Data-Sharing Policy," Journal of the European Economic Association, European Economic Association, vol. 21(3), pages 1191-1226.
    18. Jindrich Matousek & Tomas Havranek & Zuzana Irsova, 2022. "Individual discount rates: a meta-analysis of experimental evidence," Experimental Economics, Springer;Economic Science Association, vol. 25(1), pages 318-358, February.
    19. James E. Pustejovsky & Elizabeth Tipton, 2018. "Small-Sample Methods for Cluster-Robust Variance Estimation and Hypothesis Testing in Fixed Effects Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(4), pages 672-683, October.
    20. David Roodman & James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2019. "Fast and wild: Bootstrap inference in Stata using boottest," Stata Journal, StataCorp LP, vol. 19(1), pages 4-60, March.
    21. Stefano DellaVigna & Elizabeth Linos, 2022. "RCTs to Scale: Comprehensive Evidence From Two Nudge Units," Econometrica, Econometric Society, vol. 90(1), pages 81-116, January.
    22. Jack Vevea & Larry Hedges, 1995. "A general linear model for estimating effect size in the presence of publication bias," Psychometrika, Springer;The Psychometric Society, vol. 60(3), pages 419-435, September.
    23. Benjamin A. Olken, 2015. "Promises and Perils of Pre-analysis Plans," Journal of Economic Perspectives, American Economic Association, vol. 29(3), pages 61-80, Summer.
    24. David G. Rand & Joshua D. Greene & Martin A. Nowak, 2012. "Spontaneous giving and calculated greed," Nature, Nature, vol. 489(7416), pages 427-430, September.
    25. John B. Copas, 2013. "A likelihood-based sensitivity analysis for publication bias in meta-analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(1), pages 47-66, January.
    26. A. Colin Cameron & Douglas L. Miller, 2015. "A Practitioner’s Guide to Cluster-Robust Inference," Journal of Human Resources, University of Wisconsin Press, vol. 50(2), pages 317-372.
    27. Isaiah Andrews & Maximilian Kasy, 2019. "Identification of and Correction for Publication Bias," American Economic Review, American Economic Association, vol. 109(8), pages 2766-2794, August.
    28. Keane, Michael & Neal, Timothy, 2023. "Instrument strength in IV estimation and inference: A guide to theory and practice," Journal of Econometrics, Elsevier, vol. 235(2), pages 1625-1653.
    29. Xue, Xindong & Reed, W. Robert & Menclova, Andrea, 2020. "Social capital and health: a meta-analysis," Journal of Health Economics, Elsevier, vol. 72(C).
    30. Tomáš Havránek & T. D. Stanley & Hristos Doucouliagos & Pedro Bom & Jerome Geyer‐Klingeberg & Ichiro Iwasaki & W. Robert Reed & Katja Rost & R. C. M. van Aert, 2020. "Reporting Guidelines For Meta‐Analysis In Economics," Journal of Economic Surveys, Wiley Blackwell, vol. 34(3), pages 469-475, July.
    31. Mikkel Helding Vembye & James Eric Pustejovsky & Therese Deocampo Pigott, 2023. "Power Approximations for Overall Average Effects in Meta-Analysis With Dependent Effect Sizes," Journal of Educational and Behavioral Statistics, , vol. 48(1), pages 70-102, February.
    32. Maya B. Mathur & Tyler J. VanderWeele, 2020. "Sensitivity analysis for publication bias in meta‐analyses," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1091-1119, November.
    33. J. Copas, 1999. "What works?: selectivity models and meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 162(1), pages 95-109.
    34. Isaiah Andrews & James H. Stock & Liyang Sun, 2019. "Weak Instruments in Instrumental Variables Regression: Theory and Practice," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 727-753, August.
    35. Liyang Sun, 2018. "Implementing valid two-step identification-robust confidence sets for linear instrumental-variables models," Stata Journal, StataCorp LP, vol. 18(4), pages 803-825, December.
    36. Isaiah Andrews, 2018. "Valid Two-Step Identification-Robust Confidence Sets for GMM," The Review of Economics and Statistics, MIT Press, vol. 100(2), pages 337-348, May.
    37. Stephan B. Bruns, 2017. "Meta-Regression Models and Observational Research," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(5), pages 637-653, October.
    38. Jessica Gurevitch & Julia Koricheva & Shinichi Nakagawa & Gavin Stewart, 2018. "Meta-analysis and the science of research synthesis," Nature, Nature, vol. 555(7695), pages 175-182, March.
    39. Isaiah Andrews, 2016. "Conditional Linear Combination Tests for Weakly Identified Models," Econometrica, Econometric Society, vol. 84, pages 2155-2182, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Irsova, Zuzana & Bom, Pedro Ricardo Duarte & Havranek, Tomas & Rachinger, Heiko, 2023. "Spurious Precision in Meta-Analysis," MetaArXiv 3qp2w, Center for Open Science.
    2. Dominika Ehrenbergerova & Josef Bajzik & Tomas Havranek, 2023. "When Does Monetary Policy Sway House Prices? A Meta-Analysis," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 71(2), pages 538-573, June.
    3. Zuzana Irsova & Hristos Doucouliagos & Tomas Havranek & T. D. Stanley, 2023. "Meta-Analysis of Social Science Research: A Practitioner´s Guide," Working Papers IES 2023/25, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Sep 2023.
    4. Ali Elminejad & Tomas Havranek & Roman Horvath & Zuzana Irsova, 2023. "Intertemporal Substitution in Labor Supply: A Meta-Analysis," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 51, pages 1095-1113, December.
    5. Kroupova, Katerina & Havranek, Tomas & Irsova, Zuzana, 2024. "Student Employment and Education: A Meta-Analysis," Economics of Education Review, Elsevier, vol. 100(C).
    6. Gechert, Sebastian & Heimberger, Philipp, 2022. "Do corporate tax cuts boost economic growth?," European Economic Review, Elsevier, vol. 147(C).
    7. Sebastian Gechert, 2022. "Reconsidering macroeconomic policy prescriptions with meta-analysis [Statistical nonsignificance in empirical economics]," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 31(2), pages 576-590.
    8. Zigraiova, Diana & Havranek, Tomas & Irsova, Zuzana & Novak, Jiri, 2021. "How puzzling is the forward premium puzzle? A meta-analysis," European Economic Review, Elsevier, vol. 134(C).
    9. Jindrich Matousek & Tomas Havranek & Zuzana Irsova, 2022. "Individual discount rates: a meta-analysis of experimental evidence," Experimental Economics, Springer;Economic Science Association, vol. 25(1), pages 318-358, February.
    10. Furukawa, Chishio, 2019. "Publication Bias under Aggregation Frictions: Theory, Evidence, and a New Correction Method," EconStor Preprints 194798, ZBW - Leibniz Information Centre for Economics.
    11. Tomas Havranek & Zuzana Irsova & Lubica Laslopova & Olesia Zeynalova, 2020. "Skilled and Unskilled Labor Are Less Substitutable than Commonly Thought," Working Papers IES 2020/29, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Sep 2020.
    12. Alexander L. Brown & Taisuke Imai & Ferdinand M. Vieider & Colin F. Camerer, 2024. "Meta-analysis of Empirical Estimates of Loss Aversion," Journal of Economic Literature, American Economic Association, vol. 62(2), pages 485-516, June.
    13. Roman Horvath & Ali Elminejad & Tomas Havranek, 2020. "Publication and Identification Biases in Measuring the Intertemporal Substitution of Labor Supply," Working Papers IES 2020/32, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Sep 2020.
    14. Wang, Wenjie, 2021. "Wild Bootstrap for Instrumental Variables Regression with Weak Instruments and Few Clusters," MPRA Paper 106227, University Library of Munich, Germany.
    15. Abel Brodeur & Scott Carrell & David Figlio & Lester Lusher, 2023. "Unpacking P-hacking and Publication Bias," American Economic Review, American Economic Association, vol. 113(11), pages 2974-3002, November.
    16. Elminejad, Ali & Havranek, Tomas & Irsova, Zuzana, 2022. "Relative Risk Aversion: A Meta-Analysis," MetaArXiv b8uhe, Center for Open Science.
    17. Wang, Wenjie & Zhang, Yichong, 2024. "Wild bootstrap inference for instrumental variables regressions with weak and few clusters," Journal of Econometrics, Elsevier, vol. 241(1).
    18. Cazachevici, Alina & Havranek, Tomas & Horvath, Roman, 2020. "Remittances and economic growth: A meta-analysis," World Development, Elsevier, vol. 134(C).
    19. Romagnoli, Matteo, 2024. "Clean sweep: Electricity liberalization and the direction of technological change in the electricity sector," Research Policy, Elsevier, vol. 53(8).
    20. MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023. "Cluster-robust inference: A guide to empirical practice," Journal of Econometrics, Elsevier, vol. 232(2), pages 272-299.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:metaar:3qp2w_v1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/metaarxiv .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.