IDEAS home Printed from https://ideas.repec.org/a/pal/palcom/v10y2023i1d10.1057_s41599-023-02060-8.html
   My bibliography  Save this article

The concept of “interaction” in debates on human–machine interaction

Author

Listed:
  • Sebastian Schleidgen

    (FernUniversität in Hagen)

  • Orsolya Friedrich

    (FernUniversität in Hagen)

  • Selin Gerlek

    (University of Amsterdam)

  • Galia Assadi

    (Evangelische Hochschule Nürnberg)

  • Johanna Seifert

    (FernUniversität in Hagen)

Abstract

The concept of “interaction” is central to debates on Human–machine interaction (HMI). At the same time, however, it is vague and ambiguous: “interaction” is understood in different ways within and between the scientific disciplines involved in debates on HMI. Ultimately, this makes it difficult to reasonably debate questions of ethics, politics, engineering, and the sciences regarding HMI. Against this background, we elaborate and analyze the different meanings and dimensions of the term “interaction” in the disciplines and discourses relevant to debates on modern HMI. For this purpose, we introduce a four-dimensional SMPC model, according to which “interaction” is specified with a view to its subjects, modes, purposes, and contexts. With this, we aim to provide a basis for a fruitful intra- and particularly interdisciplinary discourse on HMI.

Suggested Citation

  • Sebastian Schleidgen & Orsolya Friedrich & Selin Gerlek & Galia Assadi & Johanna Seifert, 2023. "The concept of “interaction” in debates on human–machine interaction," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-13, December.
  • Handle: RePEc:pal:palcom:v:10:y:2023:i:1:d:10.1057_s41599-023-02060-8
    DOI: 10.1057/s41599-023-02060-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41599-023-02060-8
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41599-023-02060-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scott Mayer McKinney & Marcin Sieniek & Varun Godbole & Jonathan Godwin & Natasha Antropova & Hutan Ashrafian & Trevor Back & Mary Chesus & Greg S. Corrado & Ara Darzi & Mozziyar Etemadi & Florencia G, 2020. "International evaluation of an AI system for breast cancer screening," Nature, Nature, vol. 577(7788), pages 89-94, January.
    2. Scott Mayer McKinney & Marcin Sieniek & Varun Godbole & Jonathan Godwin & Natasha Antropova & Hutan Ashrafian & Trevor Back & Mary Chesus & Greg S. Corrado & Ara Darzi & Mozziyar Etemadi & Florencia G, 2020. "Addendum: International evaluation of an AI system for breast cancer screening," Nature, Nature, vol. 586(7829), pages 19-19, October.
    3. Meel Velliste & Sagi Perel & M. Chance Spalding & Andrew S. Whitford & Andrew B. Schwartz, 2008. "Cortical control of a prosthetic arm for self-feeding," Nature, Nature, vol. 453(7198), pages 1098-1101, June.
    4. Anna Nowogrodzki, 2018. "The research hardware in your video-game system," Nature, Nature, vol. 553(7686), pages 115-116, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander P. L. Martindale & Carrie D. Llewellyn & Richard O. Visser & Benjamin Ng & Victoria Ngai & Aditya U. Kale & Lavinia Ferrante Ruffano & Robert M. Golub & Gary S. Collins & David Moher & Melis, 2024. "Concordance of randomised controlled trials for artificial intelligence interventions with the CONSORT-AI reporting guidelines," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Joachim Meyer, 2024. "Doing AI: Algorithmic decision support as a human activity," Papers 2402.14674, arXiv.org, revised Apr 2024.
    3. Babak Abedin & Christian Meske & Iris Junglas & Fethi Rabhi & Hamid R. Motahari-Nezhad, 2022. "Designing and Managing Human-AI Interactions," Information Systems Frontiers, Springer, vol. 24(3), pages 691-697, June.
    4. Yuming Jiang & Zhicheng Zhang & Wei Wang & Weicai Huang & Chuanli Chen & Sujuan Xi & M. Usman Ahmad & Yulan Ren & Shengtian Sang & Jingjing Xie & Jen-Yeu Wang & Wenjun Xiong & Tuanjie Li & Zhen Han & , 2023. "Biology-guided deep learning predicts prognosis and cancer immunotherapy response," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Shu Jiang & Jiguo Cao & Bernard Rosner & Graham A. Colditz, 2023. "Supervised two‐dimensional functional principal component analysis with time‐to‐event outcomes and mammogram imaging data," Biometrics, The International Biometric Society, vol. 79(2), pages 1359-1369, June.
    6. Helen M. L. Frazer & Carlos A. Peña-Solorzano & Chun Fung Kwok & Michael S. Elliott & Yuanhong Chen & Chong Wang & Jocelyn F. Lippey & John L. Hopper & Peter Brotchie & Gustavo Carneiro & Davis J. McC, 2024. "Comparison of AI-integrated pathways with human-AI interaction in population mammographic screening for breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Minkyu Shin & Jin Kim & Bas van Opheusden & Thomas L. Griffiths, 2023. "Superhuman Artificial Intelligence Can Improve Human Decision Making by Increasing Novelty," Papers 2303.07462, arXiv.org, revised Apr 2023.
    8. Qianwei Zhou & Margarita Zuley & Yuan Guo & Lu Yang & Bronwyn Nair & Adrienne Vargo & Suzanne Ghannam & Dooman Arefan & Shandong Wu, 2021. "A machine and human reader study on AI diagnosis model safety under attacks of adversarial images," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    9. Armando Vargas-Palacios & Nisha Sharma & Gurdeep S. Sagoo, 2023. "Cost-effectiveness requirements for implementing artificial intelligence technology in the Women’s UK Breast Cancer Screening service," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Juexiao Zhou & Haoyang Li & Xingyu Liao & Bin Zhang & Wenjia He & Zhongxiao Li & Longxi Zhou & Xin Gao, 2023. "A unified method to revoke the private data of patients in intelligent healthcare with audit to forget," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Taynara de Oliveira Castellões & Paloma Maria Silva Rocha Rizol & Luiz Fernando Costa Nascimento, 2024. "Association between Premature Birth and Air Pollutants Using Fuzzy and Adaptive Neuro-Fuzzy Inference System (ANFIS) Techniques," Mathematics, MDPI, vol. 12(18), pages 1-12, September.
    12. Mélanie Roschewitz & Galvin Khara & Joe Yearsley & Nisha Sharma & Jonathan J. James & Éva Ambrózay & Adam Heroux & Peter Kecskemethy & Tobias Rijken & Ben Glocker, 2023. "Automatic correction of performance drift under acquisition shift in medical image classification," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Linlin Li & Shufang Zhao & Wenhao Ran & Zhexin Li & Yongxu Yan & Bowen Zhong & Zheng Lou & Lili Wang & Guozhen Shen, 2022. "Dual sensing signal decoupling based on tellurium anisotropy for VR interaction and neuro-reflex system application," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Andrés Úbeda & Enrique Hortal & Eduardo Iáñez & Carlos Perez-Vidal & Jose M Azorín, 2015. "Assessing Movement Factors in Upper Limb Kinematics Decoding from EEG Signals," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-12, May.
    15. Jonathan A Michaels & Benjamin Dann & Hansjörg Scherberger, 2016. "Neural Population Dynamics during Reaching Are Better Explained by a Dynamical System than Representational Tuning," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-22, November.
    16. Tobias Pistohl & Thomas Sebastian Benedikt Schmidt & Tonio Ball & Andreas Schulze-Bonhage & Ad Aertsen & Carsten Mehring, 2013. "Grasp Detection from Human ECoG during Natural Reach-to-Grasp Movements," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-11, January.
    17. Andrey Eliseyev & Tetiana Aksenova, 2016. "Penalized Multi-Way Partial Least Squares for Smooth Trajectory Decoding from Electrocorticographic (ECoG) Recording," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-19, May.
    18. Nuri F Ince & Rahul Gupta & Sami Arica & Ahmed H Tewfik & James Ashe & Giuseppe Pellizzer, 2010. "High Accuracy Decoding of Movement Target Direction in Non-Human Primates Based on Common Spatial Patterns of Local Field Potentials," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-11, December.
    19. Shinsuke Koyama & Uri Eden & Emery Brown & Robert Kass, 2010. "Bayesian decoding of neural spike trains," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(1), pages 37-59, February.
    20. Yasuhiko Nakanishi & Takufumi Yanagisawa & Duk Shin & Ryohei Fukuma & Chao Chen & Hiroyuki Kambara & Natsue Yoshimura & Masayuki Hirata & Toshiki Yoshimine & Yasuharu Koike, 2013. "Prediction of Three-Dimensional Arm Trajectories Based on ECoG Signals Recorded from Human Sensorimotor Cortex," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-9, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:palcom:v:10:y:2023:i:1:d:10.1057_s41599-023-02060-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: https://www.nature.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.