IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i2p1318-1329.html
   My bibliography  Save this article

It's all relative: Regression analysis with compositional predictors

Author

Listed:
  • Gen Li
  • Yan Li
  • Kun Chen

Abstract

Compositional data reside in a simplex and measure fractions or proportions of parts to a whole. Most existing regression methods for such data rely on log‐ratio transformations that are inadequate or inappropriate in modeling high‐dimensional data with excessive zeros and hierarchical structures. Moreover, such models usually lack a straightforward interpretation due to the interrelation between parts of a composition. We develop a novel relative‐shift regression framework that directly uses proportions as predictors. The new framework provides a paradigm shift for regression analysis with compositional predictors and offers a superior interpretation of how shifting concentration between parts affects the response. New equi‐sparsity and tree‐guided regularization methods and an efficient smoothing proximal gradient algorithm are developed to facilitate feature aggregation and dimension reduction in regression. A unified finite‐sample prediction error bound is derived for the proposed regularized estimators. We demonstrate the efficacy of the proposed methods in extensive simulation studies and a real gut microbiome study. Guided by the taxonomy of the microbiome data, the framework identifies important taxa at different taxonomic levels associated with the neurodevelopment of preterm infants.

Suggested Citation

  • Gen Li & Yan Li & Kun Chen, 2023. "It's all relative: Regression analysis with compositional predictors," Biometrics, The International Biometric Society, vol. 79(2), pages 1318-1329, June.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:1318-1329
    DOI: 10.1111/biom.13703
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13703
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13703?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wei Lin & Pixu Shi & Rui Feng & Hongzhe Li, 2014. "Variable selection in regression with compositional covariates," Biometrika, Biometrika Trust, vol. 101(4), pages 785-797.
    2. Xiaohan Yan & Jacob Bien, 2021. "Rare Feature Selection in High Dimensions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(534), pages 887-900, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bingkai Wang & Brian S. Caffo & Xi Luo & Chin‐Fu Liu & Andreia V. Faria & Michael I. Miller & Yi Zhao & for the Alzheimer's Disease Neuroimaging Initiative*, 2022. "Regularized regression on compositional trees with application to MRI analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 541-561, June.
    2. Lingjing Jiang & Niina Haiminen & Anna‐Paola Carrieri & Shi Huang & Yoshiki Vázquez‐Baeza & Laxmi Parida & Ho‐Cheol Kim & Austin D. Swafford & Rob Knight & Loki Natarajan, 2022. "Utilizing stability criteria in choosing feature selection methods yields reproducible results in microbiome data," Biometrics, The International Biometric Society, vol. 78(3), pages 1155-1167, September.
    3. Jiarui Lu & Pixu Shi & Hongzhe Li, 2019. "Generalized linear models with linear constraints for microbiome compositional data," Biometrics, The International Biometric Society, vol. 75(1), pages 235-244, March.
    4. Yuan, Panxu & Jin, Changhan & Li, Gaorong, 2024. "FDR control for linear log-contrast models with high-dimensional compositional covariates," Computational Statistics & Data Analysis, Elsevier, vol. 197(C).
    5. Jacob Fiksel & Scott Zeger & Abhirup Datta, 2022. "A transformation‐free linear regression for compositional outcomes and predictors," Biometrics, The International Biometric Society, vol. 78(3), pages 974-987, September.
    6. Jordi Saperas-Riera & Glòria Mateu-Figueras & Josep Antoni Martín-Fernández, 2024. "L p -Norm for Compositional Data: Exploring the CoDa L 1 -Norm in Penalised Regression," Mathematics, MDPI, vol. 12(9), pages 1-16, May.
    7. Juan José Egozcue & Vera Pawlowsky-Glahn, 2019. "Compositional data: the sample space and its structure," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 599-638, September.
    8. Xiao Liu & Bao-Jin Wang & Luo Xu & Hong-Ling Tang & Guo-Qing Xu, 2017. "Selection of key sequence-based features for prediction of essential genes in 31 diverse bacterial species," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-13, March.
    9. Zachary D Kurtz & Christian L Müller & Emily R Miraldi & Dan R Littman & Martin J Blaser & Richard A Bonneau, 2015. "Sparse and Compositionally Robust Inference of Microbial Ecological Networks," PLOS Computational Biology, Public Library of Science, vol. 11(5), pages 1-25, May.
    10. Sean M Devlin & Axel Martin & Irina Ostrovnaya, 2021. "Identifying prognostic pairwise relationships among bacterial species in microbiome studies," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-12, November.
    11. Aaron J. Molstad & Keshav Motwani, 2023. "Multiresolution categorical regression for interpretable cell‐type annotation," Biometrics, The International Biometric Society, vol. 79(4), pages 3485-3496, December.
    12. Patrick L. Combettes & Christian L. Müller, 2021. "Regression Models for Compositional Data: General Log-Contrast Formulations, Proximal Optimization, and Microbiome Data Applications," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(2), pages 217-242, July.
    13. Srinivasan, Arun & Xue, Lingzhou & Zhan, Xiang, 2023. "Identification of microbial features in multivariate regression under false discovery rate control," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    14. Zhigang Li & Katherine Lee & Margaret R. Karagas & Juliette C. Madan & Anne G. Hoen & A. James O’Malley & Hongzhe Li, 2018. "Conditional Regression Based on a Multivariate Zero-Inflated Logistic-Normal Model for Microbiome Relative Abundance Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(3), pages 587-608, December.
    15. Zemin Zheng & Jinchi Lv & Wei Lin, 2021. "Nonsparse Learning with Latent Variables," Operations Research, INFORMS, vol. 69(1), pages 346-359, January.
    16. Huiwen Wang & Zhichao Wang & Shanshan Wang, 2021. "Sliced inverse regression method for multivariate compositional data modeling," Statistical Papers, Springer, vol. 62(1), pages 361-393, February.
    17. Rieser, Christopher & Filzmoser, Peter, 2023. "Extending compositional data analysis from a graph signal processing perspective," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    18. Xiaofei Wu & Rongmei Liang & Hu Yang, 2022. "Penalized and constrained LAD estimation in fixed and high dimension," Statistical Papers, Springer, vol. 63(1), pages 53-95, February.
    19. Licai Huang & Paul Little & Jeroen R. Huyghe & Qian Shi & Tabitha A. Harrison & Greg Yothers & Thomas J. George & Ulrike Peters & Andrew T. Chan & Polly A. Newcomb & Wei Sun, 2021. "A Statistical Method for Association Analysis of Cell Type Compositions," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(3), pages 373-385, December.
    20. Neil Dey & Matthew Singer & Jonathan P. Williams & Srijan Sengupta, 2024. "Word Embeddings as Statistical Estimators," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(2), pages 415-441, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:1318-1329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.