Word Embeddings as Statistical Estimators
Author
Abstract
Suggested Citation
DOI: 10.1007/s13571-024-00331-1
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Junhui Wang & Xiaotong Shen & Yiwen Sun & Annie Qu, 2016. "Classification With Unstructured Predictors and an Application to Sentiment Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1242-1253, July.
- Lucy Xia & Richard Zhao & Yanhui Wu & Xin Tong, 2021. "Intentional Control of Type I Error Over Unconscious Data Distortion: A Neyman–Pearson Approach to Text Classification," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(533), pages 68-81, March.
- Yutong Li & Ruoqing Zhu & Annie Qu & Han Ye & Zhankun Sun, 2021. "Topic Modeling on Triage Notes With Semiorthogonal Nonnegative Matrix Factorization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1609-1624, October.
- Xiaohan Yan & Jacob Bien, 2021. "Rare Feature Selection in High Dimensions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(534), pages 887-900, April.
- Mingyuan Zhou & Oscar Hernan Madrid Padilla & James G. Scott, 2016. "Priors for Random Count Matrices Derived from a Family of Negative Binomial Processes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1144-1156, July.
- Matt Taddy, 2013. "Multinomial Inverse Regression for Text Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(503), pages 755-770, September.
- Edoardo M. Airoldi & Jonathan M. Bischof, 2016. "Improving and Evaluating Topic Models and Other Models of Text," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1381-1403, October.
- Scott Deerwester & Susan T. Dumais & George W. Furnas & Thomas K. Landauer & Richard Harshman, 1990. "Indexing by latent semantic analysis," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 41(6), pages 391-407, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Saskia Ter Ellen & Vegard H. Larsen & Leif Anders Thorsrud, 2022.
"Narrative Monetary Policy Surprises and the Media,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 54(5), pages 1525-1549, August.
- Saskia ter Ellen & Vegard H. Larsen & Leif Anders Thorsrud, 2019. "Narrative monetary policy surprises and the media," Working Papers No 06/2019, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- ter Ellen, Saskia & Larsen, Vegard H. & Thorsrud, Leif Anders, 2019. "Narrative monetary policy surprises and the media," Working Paper 2019/19, Norges Bank.
- Matthew Gentzkow & Bryan T. Kelly & Matt Taddy, 2017. "Text as Data," NBER Working Papers 23276, National Bureau of Economic Research, Inc.
- Berk Wheelock, Lauren & Pachamanova, Dessislava A., 2022. "Acceptable set topic modeling," European Journal of Operational Research, Elsevier, vol. 299(2), pages 653-673.
- Puklavec, Žiga & Kogler, Christoph & Stavrova, Olga & Zeelenberg, Marcel, 2023. "What we tweet about when we tweet about taxes: A topic modelling approach," Journal of Economic Behavior & Organization, Elsevier, vol. 212(C), pages 1242-1254.
- Irina Wedel & Michael Palk & Stefan Voß, 2022. "A Bilingual Comparison of Sentiment and Topics for a Product Event on Twitter," Information Systems Frontiers, Springer, vol. 24(5), pages 1635-1646, October.
- Julia Cagé & Caroline Le Pennec & Elisa Mougin, 2021.
"Corporate Donations and Political Rhetoric: Evidence from a National Ban,"
Working Papers
hal-03877943, HAL.
- Julia Cagé & Caroline Le Pennec & Elisa Mougin, 2021. "Corporate Donations and Political Rhetoric: Evidence from a National Ban," SciencePo Working papers Main hal-03877943, HAL.
- Cage, Julia & LePennec, Caroline & Mougin, Elisa, 2022. "Corporate Donations and Political Rhetoric: Evidence from a National Ban," CEPR Discussion Papers 16774, C.E.P.R. Discussion Papers.
- Mohammed Salem Binwahlan, 2023. "Polynomial Networks Model for Arabic Text Summarization," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 10(2), pages 74-84, February.
- Federico Maria Ferrara & Jörg S Haas & Andrew Peterson & Thomas Sattler, 2022. "Exports vs. Investment: How Public Discourse Shapes Support for External Imbalances," Post-Print hal-02569351, HAL.
- Curci, Ylenia & Mongeau Ospina, Christian A., 2016.
"Investigating biofuels through network analysis,"
Energy Policy, Elsevier, vol. 97(C), pages 60-72.
- Ylenia Curci & Christian Mongeau Ospina, 2016. "Investigating biofuels through network analysis," Post-Print hal-01725383, HAL.
- Chao Wei & Senlin Luo & Xincheng Ma & Hao Ren & Ji Zhang & Limin Pan, 2016. "Locally Embedding Autoencoders: A Semi-Supervised Manifold Learning Approach of Document Representation," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-20, January.
- Dehler-Holland, Joris & Schumacher, Kira & Fichtner, Wolf, 2021. "Topic Modeling Uncovers Shifts in Media Framing of the German Renewable Energy Act," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 2(1).
- Maksym Polyakov & Morteza Chalak & Md. Sayed Iftekhar & Ram Pandit & Sorada Tapsuwan & Fan Zhang & Chunbo Ma, 2018. "Authorship, Collaboration, Topics, and Research Gaps in Environmental and Resource Economics 1991–2015," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(1), pages 217-239, September.
- Ding, Ying, 2011. "Community detection: Topological vs. topical," Journal of Informetrics, Elsevier, vol. 5(4), pages 498-514.
- Klaus Gugler & Florian Szücs & Ulrich Wohak, 2023.
"Start-up Acquisitions, Venture Capital and Innovation: A Comparative Study of Google, Apple, Facebook, Amazon and Microsoft,"
Department of Economics Working Papers
wuwp340, Vienna University of Economics and Business, Department of Economics.
- Gugler, Klaus & Szücs, Florian & Wohak, Ulrich, 2023. "Start-up Acquisitions, Venture Capital and Innovation: A Comparative Study of Google, Apple, Facebook, Amazon and Microsoft," Department of Economics Working Paper Series 340, WU Vienna University of Economics and Business.
- Md Nazrul Islam & Md Mofazzal Hossain & Md Shafayet Shahed Ornob, 2024. "Business research on Industry 4.0: a systematic review using topic modelling approach," Future Business Journal, Springer, vol. 10(1), pages 1-15, December.
- Matthew Gentzkow & Jesse M. Shapiro & Matt Taddy, 2019.
"Measuring Group Differences in High‐Dimensional Choices: Method and Application to Congressional Speech,"
Econometrica, Econometric Society, vol. 87(4), pages 1307-1340, July.
- Matthew Gentzkow & Jesse M. Shapiro & Matt Taddy, 2016. "Measuring Group Differences in High-Dimensional Choices: Method and Application to Congressional Speech," NBER Working Papers 22423, National Bureau of Economic Research, Inc.
- Juan Shi & Kin Keung Lai & Ping Hu & Gang Chen, 2018. "Factors dominating individual information disseminating behavior on social networking sites," Information Technology and Management, Springer, vol. 19(2), pages 121-139, June.
- Ganesh Dash & Chetan Sharma & Shamneesh Sharma, 2023. "Sustainable Marketing and the Role of Social Media: An Experimental Study Using Natural Language Processing (NLP)," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
- Paola Cerchiello & Giancarlo Nicola, 2018. "Assessing News Contagion in Finance," Econometrics, MDPI, vol. 6(1), pages 1-19, February.
- Shr-Wei Kao & Pin Luarn, 2020. "Topic Modeling Analysis of Social Enterprises: Twitter Evidence," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
More about this item
Keywords
Copula; Word2Vec; distributed representation; statistical linguistics; language modeling; missing values SVD;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankhb:v:86:y:2024:i:2:d:10.1007_s13571-024-00331-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.