IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i2p1103-1113.html
   My bibliography  Save this article

Closed testing with Globaltest, with application in metabolomics

Author

Listed:
  • Ningning Xu
  • Aldo Solari
  • Jelle J. Goeman

Abstract

The Globaltest is a powerful test for the global null hypothesis that there is no association between a group of features and a response of interest, which is popular in pathway testing in metabolomics. Evaluating multiple feature sets, however, requires multiple testing correction. In this paper, we propose a multiple testing method, based on closed testing, specifically designed for the Globaltest. The proposed method controls the familywise error rate simultaneously over all possible feature sets, and therefore allows post hoc inference, that is, the researcher may choose feature sets of interest after seeing the data without jeopardizing error control. To circumvent the exponential computation time of closed testing, we derive a novel shortcut that allows exact closed testing to be performed on the scale of metabolomics data. An R package ctgt is available on comprehensive R archive network for the implementation of the shortcut procedure, with applications on several real metabolomics data examples.

Suggested Citation

  • Ningning Xu & Aldo Solari & Jelle J. Goeman, 2023. "Closed testing with Globaltest, with application in metabolomics," Biometrics, The International Biometric Society, vol. 79(2), pages 1103-1113, June.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:1103-1113
    DOI: 10.1111/biom.13693
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13693
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13693?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jelle J. Goeman & Sara A. Van De Geer & Hans C. Van Houwelingen, 2006. "Testing against a high dimensional alternative," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 477-493, June.
    2. Brannath, Werner & Bretz, Frank, 2010. "Shortcuts for Locally Consonant Closed Test Procedures," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 660-669.
    3. Jelle J. Goeman & Hans C. van Houwelingen & Livio Finos, 2011. "Testing against a high-dimensional alternative in the generalized linear model: asymptotic type I error control," Biometrika, Biometrika Trust, vol. 98(2), pages 381-390.
    4. Jelle J Goeman & Rosa J Meijer & Thijmen J P Krebs & Aldo Solari, 2019. "Simultaneous control of all false discovery proportions in large-scale multiple hypothesis testing," Biometrika, Biometrika Trust, vol. 106(4), pages 841-856.
    5. Jiangtao Gou & Ajit C. Tamhane & Dong Xi & Dror Rom, 2014. "A class of improved hybrid Hochberg–Hommel type step-up multiple test procedures," Biometrika, Biometrika Trust, vol. 101(4), pages 899-911.
    6. Westfall, Peter H. & Tobias, Randall D., 2007. "Multiple Testing of General Contrasts: Truncated Closure and the Extended ShafferRoyen Method," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 487-494, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Long Qu & Tobias Guennel & Scott L. Marshall, 2013. "Linear Score Tests for Variance Components in Linear Mixed Models and Applications to Genetic Association Studies," Biometrics, The International Biometric Society, vol. 69(4), pages 883-892, December.
    2. Jiang Dandan & Sun Jianguo, 2017. "Group Tests for High-dimensional Failure Time Data with the Additive Hazards Models," The International Journal of Biostatistics, De Gruyter, vol. 13(1), pages 1-10, May.
    3. Lan, Wei & Zhong, Ping-Shou & Li, Runze & Wang, Hansheng & Tsai, Chih-Ling, 2016. "Testing a single regression coefficient in high dimensional linear models," Journal of Econometrics, Elsevier, vol. 195(1), pages 154-168.
    4. Liu, Yang & Sun, Wei & Hsu, Li & He, Qianchuan, 2022. "Statistical inference for high-dimensional pathway analysis with multiple responses," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    5. He, Yi & Jaidee, Sombut & Gao, Jiti, 2023. "Most powerful test against a sequence of high dimensional local alternatives," Journal of Econometrics, Elsevier, vol. 234(1), pages 151-177.
    6. Bin Guo & Song Xi Chen, 2016. "Tests for high dimensional generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(5), pages 1079-1102, November.
    7. Ping-Shou Zhong & Tao Hu & Jun Li, 2015. "Tests for Coefficients in High-dimensional Additive Hazard Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 649-664, September.
    8. Rui Wang & Xingzhong Xu, 2021. "A Bayesian-motivated test for high-dimensional linear regression models with fixed design matrix," Statistical Papers, Springer, vol. 62(4), pages 1821-1852, August.
    9. Wang, Siyang & Cui, Hengjian, 2015. "A new test for part of high dimensional regression coefficients," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 187-203.
    10. Ma, Yingying & Lan, Wei & Wang, Hansheng, 2015. "Testing predictor significance with ultra high dimensional multivariate responses," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 275-286.
    11. Jesse Hemerik & Jelle J. Goeman & Livio Finos, 2020. "Robust testing in generalized linear models by sign flipping score contributions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 841-864, July.
    12. Zang, Yangguang & Zhang, Sanguo & Li, Qizhai & Zhang, Qingzhao, 2016. "Jackknife empirical likelihood test for high-dimensional regression coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 302-316.
    13. Yi He & Sombut Jaidee & Jiti Gao, 2020. "Most Powerful Test against High Dimensional Free Alternatives," Monash Econometrics and Business Statistics Working Papers 13/20, Monash University, Department of Econometrics and Business Statistics.
    14. Hong Guo & Changliang Zou & Zhaojun Wang & Bin Chen, 2014. "Empirical likelihood for high-dimensional linear regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(7), pages 921-945, October.
    15. Peter Jensen, 2010. "Testing the null of a low dimensional growth model," Empirical Economics, Springer, vol. 38(1), pages 193-215, February.
    16. Lan, Wei & Ding, Yue & Fang, Zheng & Fang, Kuangnan, 2016. "Testing covariates in high dimension linear regression with latent factors," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 25-37.
    17. Alessandro, Martin & Cardinale Lagomarsino, Bruno & Scartascini, Carlos & Streb, Jorge & Torrealday, Jerónimo, 2021. "Transparency and Trust in Government. Evidence from a Survey Experiment," World Development, Elsevier, vol. 138(C).
    18. Shu-Chih Su & Xiaoming Li & Yanli Zhao & Ivan S. F. Chan, 2018. "Population-Enrichment Adaptive Design Strategy for an Event-Driven Vaccine Efficacy Trial," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(2), pages 357-370, August.
    19. Brice Ozenne & Esben Budtz-Jørgensen & Sebastian Elgaard Ebert, 2023. "Controlling the familywise error rate when performing multiple comparisons in a linear latent variable model," Computational Statistics, Springer, vol. 38(1), pages 1-23, March.
    20. Stefano Bonnini & Michela Borghesi, 2022. "Relationship between Mental Health and Socio-Economic, Demographic and Environmental Factors in the COVID-19 Lockdown Period—A Multivariate Regression Analysis," Mathematics, MDPI, vol. 10(18), pages 1-15, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:1103-1113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.