IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i3p1657-1669.html
   My bibliography  Save this article

Penalized estimation of frailty‐based illness–death models for semi‐competing risks

Author

Listed:
  • Harrison T. Reeder
  • Junwei Lu
  • Sebastien Haneuse

Abstract

Semi‐competing risks refer to the time‐to‐event analysis setting, where the occurrence of a non‐terminal event is subject to whether a terminal event has occurred, but not vice versa. Semi‐competing risks arise in a broad range of clinical contexts, including studies of preeclampsia, a condition that may arise during pregnancy and for which delivery is a terminal event. Models that acknowledge semi‐competing risks enable investigation of relationships between covariates and the joint timing of the outcomes, but methods for model selection and prediction of semi‐competing risks in high dimensions are lacking. Moreover, in such settings researchers commonly analyze only a single or composite outcome, losing valuable information and limiting clinical utility—in the obstetric setting, this means ignoring valuable insight into timing of delivery after preeclampsia has onset. To address this gap, we propose a novel penalized estimation framework for frailty‐based illness–death multi‐state modeling of semi‐competing risks. Our approach combines non‐convex and structured fusion penalization, inducing global sparsity as well as parsimony across submodels. We perform estimation and model selection via a pathwise routine for non‐convex optimization, and prove statistical error rate results in this setting. We present a simulation study investigating estimation error and model selection performance, and a comprehensive application of the method to joint risk modeling of preeclampsia and timing of delivery using pregnancy data from an electronic health record.

Suggested Citation

  • Harrison T. Reeder & Junwei Lu & Sebastien Haneuse, 2023. "Penalized estimation of frailty‐based illness–death models for semi‐competing risks," Biometrics, The International Biometric Society, vol. 79(3), pages 1657-1669, September.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:3:p:1657-1669
    DOI: 10.1111/biom.13761
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13761
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13761?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jinfeng Xu & John D. Kalbfleisch & Beechoo Tai, 2010. "Statistical Analysis of Illness–Death Processes and Semicompeting Risks Data," Biometrics, The International Biometric Society, vol. 66(3), pages 716-725, September.
    2. Kyu Ha Lee & Sebastien Haneuse & Deborah Schrag & Francesca Dominici, 2015. "Bayesian semiparametric analysis of semicompeting risks data: investigating hospital readmission after a pancreatic cancer diagnosis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 64(2), pages 253-273, February.
    3. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fei Jiang & Sebastien Haneuse, 2017. "A Semi-parametric Transformation Frailty Model for Semi-competing Risks Survival Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 112-129, March.
    2. Yang Li & Hao Liu & Xiaoshen Wang & Wanzhu Tu, 2022. "Semi‐parametric time‐to‐event modelling of lengths of hospital stays," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1623-1647, November.
    3. Lea Kats & Malka Gorfine, 2023. "An accelerated failure time regression model for illness–death data: A frailty approach," Biometrics, The International Biometric Society, vol. 79(4), pages 3066-3081, December.
    4. Kyu Ha Lee & Virginie Rondeau & Sebastien Haneuse, 2017. "Accelerated failure time models for semi‐competing risks data in the presence of complex censoring," Biometrics, The International Biometric Society, vol. 73(4), pages 1401-1412, December.
    5. Daniel Nevo & Deborah Blacker & Eric B. Larson & Sebastien Haneuse, 2022. "Modeling semi‐competing risks data as a longitudinal bivariate process," Biometrics, The International Biometric Society, vol. 78(3), pages 922-936, September.
    6. Yen‐Tsung Huang, 2021. "Causal mediation of semicompeting risks," Biometrics, The International Biometric Society, vol. 77(4), pages 1143-1154, December.
    7. Xifen Huang & Jinfeng Xu & Hao Guo & Jianhua Shi & Wenjie Zhao, 2022. "An MM Algorithm for the Frailty-Based Illness Death Model with Semi-Competing Risks Data," Mathematics, MDPI, vol. 10(19), pages 1-13, October.
    8. Yen‐Tsung Huang, 2021. "Rejoinder to “Causal mediation of semicompeting risks”," Biometrics, The International Biometric Society, vol. 77(4), pages 1170-1174, December.
    9. Il Do Ha & Liming Xiang & Mengjiao Peng & Jong-Hyeon Jeong & Youngjo Lee, 2020. "Frailty modelling approaches for semi-competing risks data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(1), pages 109-133, January.
    10. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    11. Guan, Wei & Gray, Alexander, 2013. "Sparse high-dimensional fractional-norm support vector machine via DC programming," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 136-148.
    12. Qui Tran & Kelley M. Kidwell & Alex Tsodikov, 2018. "A joint model of cancer incidence, metastasis, and mortality," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(3), pages 385-406, July.
    13. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    14. Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2015. "High dimensional generalized empirical likelihood for moment restrictions with dependent data," Journal of Econometrics, Elsevier, vol. 185(1), pages 283-304.
    15. Xu, Yang & Zhao, Shishun & Hu, Tao & Sun, Jianguo, 2021. "Variable selection for generalized odds rate mixture cure models with interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    16. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    17. Emmanouil Androulakis & Christos Koukouvinos & Kalliopi Mylona & Filia Vonta, 2010. "A real survival analysis application via variable selection methods for Cox's proportional hazards model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(8), pages 1399-1406.
    18. Meng An & Haixiang Zhang, 2023. "High-Dimensional Mediation Analysis for Time-to-Event Outcomes with Additive Hazards Model," Mathematics, MDPI, vol. 11(24), pages 1-11, December.
    19. Singh, Rakhi & Stufken, John, 2024. "Factor selection in screening experiments by aggregation over random models," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
    20. Hao Wang & Hao Zeng & Jiashan Wang, 2022. "An extrapolated iteratively reweighted $$\ell _1$$ ℓ 1 method with complexity analysis," Computational Optimization and Applications, Springer, vol. 83(3), pages 967-997, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:3:p:1657-1669. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.