IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v78y2022i1p300-312.html
   My bibliography  Save this article

Bayesian dose regimen assessment in early phase oncology incorporating pharmacokinetics and pharmacodynamics

Author

Listed:
  • Emma Gerard
  • Sarah Zohar
  • Hoai‐Thu Thai
  • Christelle Lorenzato
  • Marie‐Karelle Riviere
  • Moreno Ursino

Abstract

Phase I dose‐finding trials in oncology seek to find the maximum tolerated dose of a drug under a specific schedule. Evaluating drug schedules aims at improving treatment safety while maintaining efficacy. However, while we can reasonably assume that toxicity increases with the dose for cytotoxic drugs, the relationship between toxicity and multiple schedules remains elusive. We proposed a Bayesian dose regimen assessment method (DRtox) using pharmacokinetics/pharmacodynamics (PK/PD) to estimate the maximum tolerated dose regimen (MTD‐regimen) at the end of the dose‐escalation stage of a trial. We modeled the binary toxicity via a PD endpoint and estimated the dose regimen toxicity relationship through the integration of a dose regimen PD model and a PD toxicity model. For the first model, we considered nonlinear mixed‐effects models, and for the second one, we proposed the following two Bayesian approaches: a logistic model and a hierarchical model. In an extensive simulation study, the DRtox outperformed traditional designs in terms of proportion of correctly selecting the MTD‐regimen. Moreover, the inclusion of PK/PD information helped provide more precise estimates for the entire dose regimen toxicity curve; therefore the DRtox may recommend alternative untested regimens for expansion cohorts. The DRtox was developed to be applied at the end of the dose‐escalation stage of an ongoing trial for patients with relapsed or refractory acute myeloid leukemia (NCT03594955) once all toxicity and PK/PD data are collected.

Suggested Citation

  • Emma Gerard & Sarah Zohar & Hoai‐Thu Thai & Christelle Lorenzato & Marie‐Karelle Riviere & Moreno Ursino, 2022. "Bayesian dose regimen assessment in early phase oncology incorporating pharmacokinetics and pharmacodynamics," Biometrics, The International Biometric Society, vol. 78(1), pages 300-312, March.
  • Handle: RePEc:bla:biomet:v:78:y:2022:i:1:p:300-312
    DOI: 10.1111/biom.13433
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13433
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13433?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jin Zhang & Thomas M. Braun, 2013. "A Phase I Bayesian Adaptive Design to Simultaneously Optimize Dose and Schedule Assignments Both Between and Within Patients," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(503), pages 892-901, September.
    2. Changying A. Liu & Thomas M. Braun, 2009. "Parametric non‐mixture cure models for schedule finding of therapeutic agents," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(2), pages 225-236, May.
    3. Satoshi Morita & Peter F. Thall & Peter Müller, 2008. "Determining the Effective Sample Size of a Parametric Prior," Biometrics, The International Biometric Society, vol. 64(2), pages 595-602, June.
    4. Peter F. Thall & Hoang Q. Nguyen & Thomas M. Braun & Muzaffar H. Qazilbash, 2013. "Using Joint Utilities of the Times to Response and Toxicity to Adaptively Optimize Schedule–Dose Regimes," Biometrics, The International Biometric Society, vol. 69(3), pages 673-682, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas A. Murray & Peter F. Thall & Ying Yuan & Sarah McAvoy & Daniel R. Gomez, 2017. "Robust Treatment Comparison Based on Utilities of Semi-Competing Risks in Non-Small-Cell Lung Cancer," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 11-23, January.
    2. Peter F. Thall & Hoang Q. Nguyen & Ralph G. Zinner, 2017. "Parametric dose standardization for optimizing two-agent combinations in a phase I–II trial with ordinal outcomes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(1), pages 201-224, January.
    3. Peng Yang & Yuansong Zhao & Lei Nie & Jonathon Vallejo & Ying Yuan, 2023. "SAM: Self‐adapting mixture prior to dynamically borrow information from historical data in clinical trials," Biometrics, The International Biometric Society, vol. 79(4), pages 2857-2868, December.
    4. Roland Brown & Yingling Fan & Kirti Das & Julian Wolfson, 2021. "Iterated multisource exchangeability models for individualized inference with an application to mobile sensor data," Biometrics, The International Biometric Society, vol. 77(2), pages 401-412, June.
    5. Heinz Schmidli & Sandro Gsteiger & Satrajit Roychoudhury & Anthony O'Hagan & David Spiegelhalter & Beat Neuenschwander, 2014. "Robust meta-analytic-predictive priors in clinical trials with historical control information," Biometrics, The International Biometric Society, vol. 70(4), pages 1023-1032, December.
    6. Matthew Reimherr & Xiao‐Li Meng & Dan L. Nicolae, 2021. "Prior sample size extensions for assessing prior impact and prior‐likelihood discordance," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 413-437, July.
    7. Egidi, Leonardo, 2022. "Effective sample size for a mixture prior," Statistics & Probability Letters, Elsevier, vol. 183(C).
    8. Ghaderinezhad, Fatemeh & Ley, Christophe & Serrien, Ben, 2022. "The Wasserstein Impact Measure (WIM): A practical tool for quantifying prior impact in Bayesian statistics," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    9. Adam Fleischhacker & Pak-Wing Fok & Mokshay Madiman & Nan Wu, 2023. "A Closed-Form EVSI Expression for a Multinomial Data-Generating Process," Decision Analysis, INFORMS, vol. 20(1), pages 73-84, March.
    10. Stavros Nikolakopoulos & Ingeborg van der Tweel & Kit C. B. Roes, 2018. "Dynamic borrowing through empirical power priors that control type I error," Biometrics, The International Biometric Society, vol. 74(3), pages 874-880, September.
    11. Schmidli, Heinz & Neuenschwander, Beat & Friede, Tim, 2017. "Meta-analytic-predictive use of historical variance data for the design and analysis of clinical trials," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 100-110.
    12. Federico Comoglio & Letizia Fracchia & Maurizio Rinaldi, 2013. "Bayesian Inference from Count Data Using Discrete Uniform Priors," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-8, October.
    13. David Kaplan & Jianshen Chen & Sinan Yavuz & Weicong Lyu, 2023. "Bayesian Dynamic Borrowing of Historical Information with Applications to the Analysis of Large-Scale Assessments," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 1-30, March.
    14. Beavers, Daniel P. & Stamey, James D., 2012. "Bayesian sample size determination for binary regression with a misclassified covariate and no gold standard," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2574-2582.
    15. James Berger & M. J. Bayarri & L. R. Pericchi, 2014. "The Effective Sample Size," Econometric Reviews, Taylor & Francis Journals, vol. 33(1-4), pages 197-217, June.
    16. Gary L. Rosner & Peter Müller, 2020. "Discussion on “Predictively consistent prior effective sample sizes,” by Beat Neuenschwander, Sebastian Weber, Heinz Schmidli, and Anthony O'Hagan," Biometrics, The International Biometric Society, vol. 76(2), pages 599-601, June.
    17. Alexander Kaizer & John Kittelson, 2020. "Discussion on “Predictively Consistent Prior Effective Sample Sizes” by Beat Neuenschwander, Sebastian Weber, Heinz Schmidli, and Anthony O'Hagan," Biometrics, The International Biometric Society, vol. 76(2), pages 588-590, June.
    18. Shenghua Fan & Bee Leng Lee & Ying Lu, 2020. "A Curve-Free Bayesian Decision-Theoretic Design for Phase Ia/Ib Trials Considering Both Safety and Efficacy Outcomes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(2), pages 146-166, July.
    19. Chen, Nan & Carlin, Bradley P. & Hobbs, Brian P., 2018. "Web-based statistical tools for the analysis and design of clinical trials that incorporate historical controls," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 50-68.
    20. Liyun Jiang & Lei Nie & Ying Yuan, 2023. "Elastic priors to dynamically borrow information from historical data in clinical trials," Biometrics, The International Biometric Society, vol. 79(1), pages 49-60, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:78:y:2022:i:1:p:300-312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.