IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v70y2021i5p1210-1229.html
   My bibliography  Save this article

A Bayesian phase I/II design for cancer clinical trials combining an immunotherapeutic agent with a chemotherapeutic agent

Author

Listed:
  • Beibei Guo
  • Elizabeth Garrett‐Mayer
  • Suyu Liu

Abstract

Immunotherapy is an innovative treatment approach that harnesses a patient’s immune system to treat cancer. It has provided an alternative and complementary treatment modality to conventional chemotherapy. Combining immunotherapy with cytotoxic chemotherapy agent has become the leading trend and the most active research field in oncology. To accommodate this growing trend, we propose a Bayesian phase I/II dose‐finding design to identify the optimal biological dose combination (OBDC), defined as the dose combination with the highest desirability in the risk‐benefit trade‐off. We propose new statistical models to describe the relationship between the doses and treatment outcomes, including immune response, toxicity and progression‐free survival (PFS). During the trial, based on accrued data, we continuously update model estimates and adaptively assign patients to dose combinations with high desirability. The simulation study shows that our design has desirable operating characteristics.

Suggested Citation

  • Beibei Guo & Elizabeth Garrett‐Mayer & Suyu Liu, 2021. "A Bayesian phase I/II design for cancer clinical trials combining an immunotherapeutic agent with a chemotherapeutic agent," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1210-1229, November.
  • Handle: RePEc:bla:jorssc:v:70:y:2021:i:5:p:1210-1229
    DOI: 10.1111/rssc.12508
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssc.12508
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssc.12508?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. P. C. Lambert & P. W. Dickman & C. L. Weston & J. R. Thompson, 2010. "Estimating the cure fraction in population‐based cancer studies by using finite mixture models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(1), pages 35-55, January.
    2. Nadine Houede & Peter F. Thall & Hoang Nguyen & Xavier Paoletti & Andrew Kramar, 2010. "Utility-Based Optimization of Combination Therapy Using Ordinal Toxicity and Efficacy in Phase I/II Trials," Biometrics, The International Biometric Society, vol. 66(2), pages 532-540, June.
    3. Beibei Guo & Ying Yuan, 2017. "Bayesian Phase I/II Biomarker-Based Dose Finding for Precision Medicine With Molecularly Targeted Agents," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 508-520, April.
    4. Suyu Liu & Beibei Guo & Ying Yuan, 2018. "A Bayesian Phase I/II Trial Design for Immunotherapy," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1016-1027, July.
    5. Judy P. Sy & Jeremy M. G. Taylor, 2000. "Estimation in a Cox Proportional Hazards Cure Model," Biometrics, The International Biometric Society, vol. 56(1), pages 227-236, March.
    6. Nolan A. Wages & Mark R. Conaway & John O'Quigley, 2011. "Continual Reassessment Method for Partial Ordering," Biometrics, The International Biometric Society, vol. 67(4), pages 1555-1563, December.
    7. Jin Zhang & Thomas M. Braun, 2013. "A Phase I Bayesian Adaptive Design to Simultaneously Optimize Dose and Schedule Assignments Both Between and Within Patients," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(503), pages 892-901, September.
    8. Tsodikov A.D. & Ibrahim J.G. & Yakovlev A.Y., 2003. "Estimating Cure Rates From Survival Data: An Alternative to Two-Component Mixture Models," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 1063-1078, January.
    9. Chunyan Cai & Ying Yuan & Yuan Ji, 2014. "A Bayesian dose finding design for oncology clinical trials of combinational biological agents," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(1), pages 159-173, January.
    10. Guosheng Yin & Ying Yuan, 2009. "A Latent Contingency Table Approach to Dose Finding for Combinations of Two Agents," Biometrics, The International Biometric Society, vol. 65(3), pages 866-875, September.
    11. Guosheng Yin & Ying Yuan, 2009. "Bayesian dose finding in oncology for drug combinations by copula regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(2), pages 211-224, May.
    12. Peter F. Thall & Randall E. Millikan & Peter Mueller & Sang-Joon Lee, 2003. "Dose-Finding with Two Agents in Phase I Oncology Trials," Biometrics, The International Biometric Society, vol. 59(3), pages 487-496, September.
    13. M.-K. Riviere & Y. Yuan & F. Dubois & S. Zohar, 2015. "A Bayesian dose finding design for clinical trials combining a cytotoxic agent with a molecularly targeted agent," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 64(1), pages 215-229, January.
    14. Thomas M. Braun & Shufang Wang, 2010. "A Hierarchical Bayesian Design for Phase I Trials of Novel Combinations of Cancer Therapeutic Agents," Biometrics, The International Biometric Society, vol. 66(3), pages 805-812, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beibei Guo & Suyu Liu, 2018. "Optimal Benchmark for Evaluating Drug-Combination Dose-Finding Clinical Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(1), pages 184-201, April.
    2. Márcio A. Diniz & Sungjin Kim & Mourad Tighiouart, 2020. "A Bayesian Adaptive Design in Cancer Phase I Trials Using Dose Combinations with Ordinal Toxicity Grades," Stats, MDPI, vol. 3(3), pages 1-18, July.
    3. Chunyan Cai & Ying Yuan & Yuan Ji, 2014. "A Bayesian dose finding design for oncology clinical trials of combinational biological agents," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(1), pages 159-173, January.
    4. Koichi Hashizume & Jun Tshuchida & Takashi Sozu, 2022. "Flexible use of copula‐type model for dose‐finding in drug combination clinical trials," Biometrics, The International Biometric Society, vol. 78(4), pages 1651-1661, December.
    5. Nolan A. Wages & Mark R. Conaway & John O'Quigley, 2011. "Continual Reassessment Method for Partial Ordering," Biometrics, The International Biometric Society, vol. 67(4), pages 1555-1563, December.
    6. Chen, Chyong-Mei & Lu, Tai-Fang C., 2012. "Marginal analysis of multivariate failure time data with a surviving fraction based on semiparametric transformation cure models," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 645-655.
    7. Guoqing Diao & Ao Yuan, 2019. "A class of semiparametric cure models with current status data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(1), pages 26-51, January.
    8. Elizabeth Hashimoto & Gauss Cordeiro & Edwin Ortega, 2013. "The new Neyman type A beta Weibull model with long-term survivors," Computational Statistics, Springer, vol. 28(3), pages 933-954, June.
    9. repec:syb:wpbsba:03/2013 is not listed on IDEAS
    10. Guosheng Yin, 2005. "Bayesian Cure Rate Frailty Models with Application to a Root Canal Therapy Study," Biometrics, The International Biometric Society, vol. 61(2), pages 552-558, June.
    11. Guosheng Yin & Joseph G. Ibrahim, 2005. "A General Class of Bayesian Survival Models with Zero and Nonzero Cure Fractions," Biometrics, The International Biometric Society, vol. 61(2), pages 403-412, June.
    12. José L. Jiménez & Mourad Tighiouart, 2022. "Combining cytotoxic agents with continuous dose levels in seamless phase I‐II clinical trials," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1996-2013, November.
    13. Hu, Tao & Xiang, Liming, 2013. "Efficient estimation for semiparametric cure models with interval-censored data," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 139-151.
    14. Yilong Zhang & Xiaoxia Han & Yongzhao Shao, 2021. "The ROC of Cox proportional hazards cure models with application in cancer studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(2), pages 195-215, April.
    15. Hengzhen Huang & Hong†Bin Fang & Ming T. Tan, 2018. "Experimental design for multi†drug combination studies using signaling networks," Biometrics, The International Biometric Society, vol. 74(2), pages 538-547, June.
    16. Mauro Gasparini & Stuart Bailey & Beat Neuenschwander, 2010. "Bayesian dose finding in oncology for drug combinations by copula regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(3), pages 543-544, May.
    17. Pavel Mozgunov & Rochelle Knight & Helen Barnett & Thomas Jaki, 2021. "Using an Interaction Parameter in Model-Based Phase I Trials for Combination Treatments? A Simulation Study," IJERPH, MDPI, vol. 18(1), pages 1-19, January.
    18. Justin Chown & Cédric Heuchenne & Ingrid Van Keilegom, 2020. "The nonparametric location-scale mixture cure model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 1008-1028, December.
    19. Sangbum Choi & Xuelin Huang, 2012. "A General Class of Semiparametric Transformation Frailty Models for Nonproportional Hazards Survival Data," Biometrics, The International Biometric Society, vol. 68(4), pages 1126-1135, December.
    20. Guoqing Diao & Donglin Zeng & Song Yang, 2013. "Efficient Semiparametric Estimation of Short-Term and Long-Term Hazard Ratios with Right-Censored Data," Biometrics, The International Biometric Society, vol. 69(4), pages 840-849, December.
    21. Zhao, Xiaobing & Zhou, Xian, 2006. "Proportional hazards models for survival data with long-term survivors," Statistics & Probability Letters, Elsevier, vol. 76(15), pages 1685-1693, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:70:y:2021:i:5:p:1210-1229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.