Effective sample size for a mixture prior
Author
Abstract
Suggested Citation
DOI: 10.1016/j.spl.2021.109335
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Heinz Schmidli & Sandro Gsteiger & Satrajit Roychoudhury & Anthony O'Hagan & David Spiegelhalter & Beat Neuenschwander, 2014. "Robust meta-analytic-predictive priors in clinical trials with historical control information," Biometrics, The International Biometric Society, vol. 70(4), pages 1023-1032, December.
- Satoshi Morita & Peter F. Thall & Peter Müller, 2008. "Determining the Effective Sample Size of a Parametric Prior," Biometrics, The International Biometric Society, vol. 64(2), pages 595-602, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Beat Neuenschwander & Sebastian Weber & Heinz Schmidli & Anthony O'Hagan, 2020. "Predictively consistent prior effective sample sizes," Biometrics, The International Biometric Society, vol. 76(2), pages 578-587, June.
- Schmidli, Heinz & Neuenschwander, Beat & Friede, Tim, 2017. "Meta-analytic-predictive use of historical variance data for the design and analysis of clinical trials," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 100-110.
- David Kaplan & Jianshen Chen & Sinan Yavuz & Weicong Lyu, 2023. "Bayesian Dynamic Borrowing of Historical Information with Applications to the Analysis of Large-Scale Assessments," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 1-30, March.
- Moreno Ursino & Nigel Stallard, 2021. "Bayesian Approaches for Confirmatory Trials in Rare Diseases: Opportunities and Challenges," IJERPH, MDPI, vol. 18(3), pages 1-9, January.
- Shenghua Fan & Bee Leng Lee & Ying Lu, 2020. "A Curve-Free Bayesian Decision-Theoretic Design for Phase Ia/Ib Trials Considering Both Safety and Efficacy Outcomes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(2), pages 146-166, July.
- Peng Yang & Yuansong Zhao & Lei Nie & Jonathon Vallejo & Ying Yuan, 2023. "SAM: Self‐adapting mixture prior to dynamically borrow information from historical data in clinical trials," Biometrics, The International Biometric Society, vol. 79(4), pages 2857-2868, December.
- Roland Brown & Yingling Fan & Kirti Das & Julian Wolfson, 2021. "Iterated multisource exchangeability models for individualized inference with an application to mobile sensor data," Biometrics, The International Biometric Society, vol. 77(2), pages 401-412, June.
- Heinz Schmidli & Sandro Gsteiger & Satrajit Roychoudhury & Anthony O'Hagan & David Spiegelhalter & Beat Neuenschwander, 2014. "Robust meta-analytic-predictive priors in clinical trials with historical control information," Biometrics, The International Biometric Society, vol. 70(4), pages 1023-1032, December.
- Jingyi Zhang & Nolan A. Wages & Ruitao Lin, 2024. "SFU: Surface-Free Utility-Based Design for Dose Optimization in Cancer Drug Combination Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(3), pages 854-881, December.
- Chen, Nan & Carlin, Bradley P. & Hobbs, Brian P., 2018. "Web-based statistical tools for the analysis and design of clinical trials that incorporate historical controls," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 50-68.
- Matthew Reimherr & Xiao‐Li Meng & Dan L. Nicolae, 2021. "Prior sample size extensions for assessing prior impact and prior‐likelihood discordance," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 413-437, July.
- Liyun Jiang & Lei Nie & Ying Yuan, 2023. "Elastic priors to dynamically borrow information from historical data in clinical trials," Biometrics, The International Biometric Society, vol. 79(1), pages 49-60, March.
- Thomas A. Murray & Peter F. Thall & Ying Yuan & Sarah McAvoy & Daniel R. Gomez, 2017. "Robust Treatment Comparison Based on Utilities of Semi-Competing Risks in Non-Small-Cell Lung Cancer," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 11-23, January.
- Wenlin Yuan & Ming-Hui Chen & John Zhong, 2022. "Flexible Conditional Borrowing Approaches for Leveraging Historical Data in the Bayesian Design of Superiority Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(2), pages 197-215, July.
- Leonhard Held & Rafael Sauter, 2017. "Adaptive prior weighting in generalized regression," Biometrics, The International Biometric Society, vol. 73(1), pages 242-251, March.
- Ian Wadsworth & Lisa V. Hampson & Thomas Jaki & Graeme J. Sills & Anthony G. Marson & Richard Appleton, 2020. "A quantitative framework to inform extrapolation decisions in children," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 515-534, February.
- Emma Gerard & Sarah Zohar & Hoai‐Thu Thai & Christelle Lorenzato & Marie‐Karelle Riviere & Moreno Ursino, 2022. "Bayesian dose regimen assessment in early phase oncology incorporating pharmacokinetics and pharmacodynamics," Biometrics, The International Biometric Society, vol. 78(1), pages 300-312, March.
- Dan J. Spitzner, 2023. "Calibrated Bayes factors under flexible priors," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(3), pages 733-767, September.
- Ghaderinezhad, Fatemeh & Ley, Christophe & Serrien, Ben, 2022. "The Wasserstein Impact Measure (WIM): A practical tool for quantifying prior impact in Bayesian statistics," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
- Gerber, Florian & Gsponer, Thomas, 2016. "gsbDesign: An R Package for Evaluating the Operating Characteristics of a Group Sequential Bayesian Design," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 69(i11).
More about this item
Keywords
Statistical application; Clinical trial; Prior-data conflict;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:183:y:2022:i:c:s0167715221002856. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.