IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v74y2012i5p825-847.html
   My bibliography  Save this article

Ordinal dominance curve based inference for stochastically ordered distributions

Author

Listed:
  • Ori Davidov
  • Amir Herman

Abstract

No abstract is available for this item.

Suggested Citation

  • Ori Davidov & Amir Herman, 2012. "Ordinal dominance curve based inference for stochastically ordered distributions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(5), pages 825-847, November.
  • Handle: RePEc:bla:jorssb:v:74:y:2012:i:5:p:825-847
    DOI: j.1467-9868.2012.01031.x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1467-9868.2012.01031.x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/j.1467-9868.2012.01031.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duarte, Belmiro P.M. & Atkinson, Anthony C. & P. Singh, Satya & S. Reis, Marco, 2023. "Optimal design of experiments for hypothesis testing on ordered treatments via intersection-union tests," LSE Research Online Documents on Economics 115187, London School of Economics and Political Science, LSE Library.
    2. Lok, Thomas M. & Tabri, Rami V., 2021. "An improved bootstrap test for restricted stochastic dominance," Journal of Econometrics, Elsevier, vol. 224(2), pages 371-393.
    3. Ori Davidov & Shyamal Peddada, 2013. "Testing for the Multivariate Stochastic Order among Ordered Experimental Groups with Application to Dose–Response Studies," Biometrics, The International Biometric Society, vol. 69(4), pages 982-990, December.
    4. Wei Zhang & Larry L. Tang & Qizhai Li & Aiyi Liu & Mei‐Ling Ting Lee, 2020. "Order‐restricted inference for clustered ROC data with application to fingerprint matching accuracy," Biometrics, The International Biometric Society, vol. 76(3), pages 863-873, September.
    5. Ori Davidov & George Iliopoulos, 2012. "Estimating a distribution function subject to a stochastic order restriction: a comparative study," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 923-933, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:74:y:2012:i:5:p:825-847. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.