IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v92y2005i1p159-171.html
   My bibliography  Save this article

Nonparametric tests for and against likelihood ratio ordering in the two-sample problem

Author

Listed:
  • Christopher A. Carolan
  • Joshua M. Tebbs

Abstract

We derive nonparametric procedures for testing for and against likelihood ratio ordering in the two-population setting with continuous distributions. We account for this ordering by examining the least concave majorant of the ordinal dominance curve formed from the nonparametric maximum likelihood estimators of the continuous distribution functions F and G. In particular, we focus on testing equality of F and G versus likelihood ratio ordering and testing for a violation of likelihood ratio ordering. For both testing problems, we propose area-based and sup-norm-based test statistics, derive appropriate limiting distributions, and provide simulation results that characterise the performance of our procedures. We illustrate our methods using data from a controlled experiment involving the effects of radiation on mice. Copyright 2005, Oxford University Press.

Suggested Citation

  • Christopher A. Carolan & Joshua M. Tebbs, 2005. "Nonparametric tests for and against likelihood ratio ordering in the two-sample problem," Biometrika, Biometrika Trust, vol. 92(1), pages 159-171, March.
  • Handle: RePEc:oup:biomet:v:92:y:2005:i:1:p:159-171
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/92.1.159
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beare, Brendan K. & Moon, Jong-Myun, 2012. "Testing the concavity of an ordinaldominance curve," University of California at San Diego, Economics Working Paper Series qt6qg1f8ms, Department of Economics, UC San Diego.
    2. Brendan K. Beare & Lawrence D. W. Schmidt, 2016. "An Empirical Test of Pricing Kernel Monotonicity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(2), pages 338-356, March.
    3. Sangita Kulathinal & Isha Dewan, 2023. "Weighted U-statistics for likelihood-ratio ordering of bivariate data," Statistical Papers, Springer, vol. 64(2), pages 705-735, April.
    4. Graham Elliott & Nikolay Kudrin & Kaspar Wüthrich, 2022. "Detecting p‐Hacking," Econometrica, Econometric Society, vol. 90(2), pages 887-906, March.
    5. Beare, Brendan K. & Shi, Xiaoxia, 2019. "An improved bootstrap test of density ratio ordering," Econometrics and Statistics, Elsevier, vol. 10(C), pages 9-26.
    6. Zheng Fang, 2021. "A Unifying Framework for Testing Shape Restrictions," Papers 2107.12494, arXiv.org, revised Aug 2021.
    7. Wei Zhang & Larry L. Tang & Qizhai Li & Aiyi Liu & Mei‐Ling Ting Lee, 2020. "Order‐restricted inference for clustered ROC data with application to fingerprint matching accuracy," Biometrics, The International Biometric Society, vol. 76(3), pages 863-873, September.
    8. Graham Elliott & Nikolay Kudrin & Kaspar Wuthrich, 2022. "The Power of Tests for Detecting $p$-Hacking," Papers 2205.07950, arXiv.org, revised Apr 2024.
    9. OrI Davidov & Konstantinos Fokianos & George Iliopoulos, 2014. "Semiparametric Inference for the Two-way Layout Under Order Restrictions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 622-638, September.
    10. Wang, Dewei & Tang, Chuan-Fa & Tebbs, Joshua M., 2020. "More powerful goodness-of-fit tests for uniform stochastic ordering," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    11. Seo, Juwon, 2018. "Tests of stochastic monotonicity with improved power," Journal of Econometrics, Elsevier, vol. 207(1), pages 53-70.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:92:y:2005:i:1:p:159-171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.