IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v76y2020i2p599-601.html
   My bibliography  Save this article

Discussion on “Predictively consistent prior effective sample sizes,” by Beat Neuenschwander, Sebastian Weber, Heinz Schmidli, and Anthony O'Hagan

Author

Listed:
  • Gary L. Rosner
  • Peter Müller

Abstract

Neuenschwander et al. address a seemingly easy but often complicated problem in applied Bayesian methodology. We discuss some issues that relate to the question of why one might care about the effective sample size (ESS) in a Bayesian model and the motivation for reporting the ESS.

Suggested Citation

  • Gary L. Rosner & Peter Müller, 2020. "Discussion on “Predictively consistent prior effective sample sizes,” by Beat Neuenschwander, Sebastian Weber, Heinz Schmidli, and Anthony O'Hagan," Biometrics, The International Biometric Society, vol. 76(2), pages 599-601, June.
  • Handle: RePEc:bla:biomet:v:76:y:2020:i:2:p:599-601
    DOI: 10.1111/biom.13254
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13254
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13254?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Leonhard Held, 2020. "A new standard for the analysis and design of replication studies," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 431-448, February.
    2. Steffen Ventz & Matteo Cellamare & Sergio Bacallado & Lorenzo Trippa, 2019. "Bayesian Uncertainty Directed Trial Designs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 962-974, July.
    3. Satoshi Morita & Peter F. Thall & Peter Müller, 2008. "Determining the Effective Sample Size of a Parametric Prior," Biometrics, The International Biometric Society, vol. 64(2), pages 595-602, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Yang & Yuansong Zhao & Lei Nie & Jonathon Vallejo & Ying Yuan, 2023. "SAM: Self‐adapting mixture prior to dynamically borrow information from historical data in clinical trials," Biometrics, The International Biometric Society, vol. 79(4), pages 2857-2868, December.
    2. Roland Brown & Yingling Fan & Kirti Das & Julian Wolfson, 2021. "Iterated multisource exchangeability models for individualized inference with an application to mobile sensor data," Biometrics, The International Biometric Society, vol. 77(2), pages 401-412, June.
    3. Heinz Schmidli & Sandro Gsteiger & Satrajit Roychoudhury & Anthony O'Hagan & David Spiegelhalter & Beat Neuenschwander, 2014. "Robust meta-analytic-predictive priors in clinical trials with historical control information," Biometrics, The International Biometric Society, vol. 70(4), pages 1023-1032, December.
    4. Matthew Reimherr & Xiao‐Li Meng & Dan L. Nicolae, 2021. "Prior sample size extensions for assessing prior impact and prior‐likelihood discordance," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 413-437, July.
    5. Thomas A. Murray & Peter F. Thall & Ying Yuan & Sarah McAvoy & Daniel R. Gomez, 2017. "Robust Treatment Comparison Based on Utilities of Semi-Competing Risks in Non-Small-Cell Lung Cancer," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 11-23, January.
    6. Egidi, Leonardo, 2022. "Effective sample size for a mixture prior," Statistics & Probability Letters, Elsevier, vol. 183(C).
    7. Emma Gerard & Sarah Zohar & Hoai‐Thu Thai & Christelle Lorenzato & Marie‐Karelle Riviere & Moreno Ursino, 2022. "Bayesian dose regimen assessment in early phase oncology incorporating pharmacokinetics and pharmacodynamics," Biometrics, The International Biometric Society, vol. 78(1), pages 300-312, March.
    8. Ghaderinezhad, Fatemeh & Ley, Christophe & Serrien, Ben, 2022. "The Wasserstein Impact Measure (WIM): A practical tool for quantifying prior impact in Bayesian statistics," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    9. Adam Fleischhacker & Pak-Wing Fok & Mokshay Madiman & Nan Wu, 2023. "A Closed-Form EVSI Expression for a Multinomial Data-Generating Process," Decision Analysis, INFORMS, vol. 20(1), pages 73-84, March.
    10. Stavros Nikolakopoulos & Ingeborg van der Tweel & Kit C. B. Roes, 2018. "Dynamic borrowing through empirical power priors that control type I error," Biometrics, The International Biometric Society, vol. 74(3), pages 874-880, September.
    11. Freuli, Francesca & Held, Leonhard & Heyard, Rachel, 2022. "Replication Success under Questionable Research Practices - A Simulation Study," I4R Discussion Paper Series 2, The Institute for Replication (I4R).
    12. Muradchanian, Jasmine & Hoekstra, Rink & Kiers, Henk & van Ravenzwaaij, Don, 2020. "How Best to Quantify Replication Success? A Simulation Study on the Comparison of Replication Success Metrics," MetaArXiv wvdjf, Center for Open Science.
    13. Lawrence L. Kupper & Sandra L. Martin, 2022. "Replication study design: confidence intervals and commentary," Statistical Papers, Springer, vol. 63(5), pages 1577-1583, October.
    14. Schmidli, Heinz & Neuenschwander, Beat & Friede, Tim, 2017. "Meta-analytic-predictive use of historical variance data for the design and analysis of clinical trials," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 100-110.
    15. Peter F. Thall & Hoang Q. Nguyen & Ralph G. Zinner, 2017. "Parametric dose standardization for optimizing two-agent combinations in a phase I–II trial with ordinal outcomes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(1), pages 201-224, January.
    16. Federico Comoglio & Letizia Fracchia & Maurizio Rinaldi, 2013. "Bayesian Inference from Count Data Using Discrete Uniform Priors," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-8, October.
    17. David Kaplan & Jianshen Chen & Sinan Yavuz & Weicong Lyu, 2023. "Bayesian Dynamic Borrowing of Historical Information with Applications to the Analysis of Large-Scale Assessments," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 1-30, March.
    18. Beavers, Daniel P. & Stamey, James D., 2012. "Bayesian sample size determination for binary regression with a misclassified covariate and no gold standard," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2574-2582.
    19. James Berger & M. J. Bayarri & L. R. Pericchi, 2014. "The Effective Sample Size," Econometric Reviews, Taylor & Francis Journals, vol. 33(1-4), pages 197-217, June.
    20. Alexander Kaizer & John Kittelson, 2020. "Discussion on “Predictively Consistent Prior Effective Sample Sizes” by Beat Neuenschwander, Sebastian Weber, Heinz Schmidli, and Anthony O'Hagan," Biometrics, The International Biometric Society, vol. 76(2), pages 588-590, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:76:y:2020:i:2:p:599-601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.