IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v76y2020i2p438-447.html
   My bibliography  Save this article

Inference in MCMC step selection models

Author

Listed:
  • Théo Michelot
  • Paul G. Blackwell
  • Simon Chamaillé‐Jammes
  • Jason Matthiopoulos

Abstract

Habitat selection models are used in ecology to link the spatial distribution of animals to environmental covariates and identify preferred habitats. The most widely used models of this type, resource selection functions, aim to capture the steady‐state distribution of space use of the animal, but they assume independence between the observed locations of an animal. This is unrealistic when location data display temporal autocorrelation. The alternative approach of step selection functions embed habitat selection in a model of animal movement, to account for the autocorrelation. However, inferences from step selection functions depend on the underlying movement model, and they do not readily predict steady‐state space use. We suggest an analogy between parameter updates and target distributions in Markov chain Monte Carlo (MCMC) algorithms, and step selection and steady‐state distributions in movement ecology, leading to a step selection model with an explicit steady‐state distribution. In this framework, we explain how maximum likelihood estimation can be used for simultaneous inference about movement and habitat selection. We describe the local Gibbs sampler, a novel rejection‐free MCMC scheme, use it as the basis of a flexible class of animal movement models, and derive its likelihood function for several important special cases. In a simulation study, we verify that maximum likelihood estimation can recover all model parameters. We illustrate the application of the method with data from a zebra.

Suggested Citation

  • Théo Michelot & Paul G. Blackwell & Simon Chamaillé‐Jammes & Jason Matthiopoulos, 2020. "Inference in MCMC step selection models," Biometrics, The International Biometric Society, vol. 76(2), pages 438-447, June.
  • Handle: RePEc:bla:biomet:v:76:y:2020:i:2:p:438-447
    DOI: 10.1111/biom.13170
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13170
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13170?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. P. G. Blackwell, 2003. "Bayesian inference for Markov processes with diffusion and discrete components," Biometrika, Biometrika Trust, vol. 90(3), pages 613-627, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Svetlana V. Tishkovskaya & Paul G. Blackwell, 2021. "Bayesian estimation of heterogeneous environments from animal movement data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
    2. Kim, Yongku & Berliner, L. Mark, 2016. "Change of spatiotemporal scale in dynamic models," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 80-92.
    3. Devin S. Johnson & Dana L. Thomas & Jay M. Ver Hoef & Aaron Christ, 2008. "A General Framework for the Analysis of Animal Resource Selection from Telemetry Data," Biometrics, The International Biometric Society, vol. 64(3), pages 968-976, September.
    4. Mu Niu & Fay Frost & Jordan E. Milner & Anna Skarin & Paul G. Blackwell, 2022. "Modelling group movement with behaviour switching in continuous time," Biometrics, The International Biometric Society, vol. 78(1), pages 286-299, March.
    5. Ann E. McKellar & Roland Langrock & Jeffrey R. Walters & Dylan C. Kesler, 2015. "Using mixed hidden Markov models to examine behavioral states in a cooperatively breeding bird," Behavioral Ecology, International Society for Behavioral Ecology, vol. 26(1), pages 148-157.
    6. Zaineb L. Boulil & John W. Durban & Holly Fearnbach & Trevor W. Joyce & Samantha G. M. Leander & Henry R. Scharf, 2023. "Detecting Changes in Dynamic Social Networks Using Multiply-Labeled Movement Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(2), pages 243-259, June.
    7. Rosen, Ori & Thompson, Wesley K., 2009. "A Bayesian regression model for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3773-3786, September.
    8. A. Parton & P. G. Blackwell, 2017. "Bayesian Inference for Multistate ‘Step and Turn’ Animal Movement in Continuous Time," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(3), pages 373-392, September.
    9. Harris, Keith J. & Blackwell, Paul G., 2013. "Flexible continuous-time modelling for heterogeneous animal movement," Ecological Modelling, Elsevier, vol. 255(C), pages 29-37.
    10. Toby A. Patterson & Alison Parton & Roland Langrock & Paul G. Blackwell & Len Thomas & Ruth King, 2017. "Statistical modelling of individual animal movement: an overview of key methods and a discussion of practical challenges," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(4), pages 399-438, October.
    11. Trung Dung Tran & Emmanuel Lesaffre & Geert Verbeke & Joke Duyck, 2021. "Latent Ornstein‐Uhlenbeck models for Bayesian analysis of multivariate longitudinal categorical responses," Biometrics, The International Biometric Society, vol. 77(2), pages 689-701, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:76:y:2020:i:2:p:438-447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.