IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v74y2018i1p68-76.html
   My bibliography  Save this article

Semiparametric probit models with univariate and bivariate current†status data

Author

Listed:
  • Hao Liu
  • Jing Qin

Abstract

Multivariate current†status data are frequently encountered in biomedical and public health studies. Semiparametric regression models have been extensively studied for univariate current†status data, but most existing estimation procedures are computationally intensive, involving either penalization or smoothing techniques. It becomes more challenging for the analysis of multivariate current†status data. In this article, we study the maximum likelihood estimations for univariate and bivariate current†status data under the semiparametric probit regression models. We present a simple computational procedure combining the expectation–maximization algorithm with the pool†adjacent†violators algorithm for solving the monotone constraint on the baseline function. Asymptotic properties of the maximum likelihood estimators are investigated, including the calculation of the explicit information bound for univariate current†status data, as well as the asymptotic consistency and convergence rate for bivariate current†status data. Extensive simulation studies showed that the proposed computational procedures performed well under small or moderate sample sizes. We demonstrate the estimation procedure with two real data examples in the areas of diabetic and HIV research.

Suggested Citation

  • Hao Liu & Jing Qin, 2018. "Semiparametric probit models with univariate and bivariate current†status data," Biometrics, The International Biometric Society, vol. 74(1), pages 68-76, March.
  • Handle: RePEc:bla:biomet:v:74:y:2018:i:1:p:68-76
    DOI: 10.1111/biom.12709
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12709
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12709?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gregg E. Dinse & S. W. Lagakos, 1983. "Regression Analysis of Tumour Prevalence Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 32(3), pages 236-248, November.
    2. Cai, Bo & Lin, Xiaoyan & Wang, Lianming, 2011. "Bayesian proportional hazards model for current status data with monotone splines," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2644-2651, September.
    3. Nicholas P. Jewell & Mark van der Laan & Xiudong Lei, 2005. "Bivariate current status data with univariate monitoring times," Biometrika, Biometrika Trust, vol. 92(4), pages 847-862, December.
    4. Ding, A. Adam & Wang, Weijing, 2004. "Testing Independence for Bivariate Current Status Data," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 145-155, January.
    5. David B. Dunson & Gregg E. Dinse, 2002. "Bayesian Models for Multivariate Current Status Data with Informative Censoring," Biometrics, The International Biometric Society, vol. 58(1), pages 79-88, March.
    6. Wang, Naichen & Wang, Lianming & McMahan, Christopher S., 2015. "Regression analysis of bivariate current status data under the Gamma-frailty proportional hazards model using the EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 140-150.
    7. Liuquan Sun & Lianming Wang & Jianguo Sun, 2006. "Estimation of the Association for Bivariate Interval‐censored Failure Time Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(4), pages 637-649, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gamage, Prabhashi W. Withana & McMahan, Christopher S. & Wang, Lianming & Tu, Wanzhu, 2018. "A Gamma-frailty proportional hazards model for bivariate interval-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 354-366.
    2. Wang, Naichen & Wang, Lianming & McMahan, Christopher S., 2015. "Regression analysis of bivariate current status data under the Gamma-frailty proportional hazards model using the EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 140-150.
    3. Prabhashi W. Withana Gamage & Monica Chaudari & Christopher S. McMahan & Edwin H. Kim & Michael R. Kosorok, 2020. "An extended proportional hazards model for interval-censored data subject to instantaneous failures," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(1), pages 158-182, January.
    4. Li, Shuwei & Hu, Tao & Wang, Peijie & Sun, Jianguo, 2017. "Regression analysis of current status data in the presence of dependent censoring with applications to tumorigenicity experiments," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 75-86.
    5. Yujie Zhong & Richard J. Cook, 2018. "Second-Order Estimating Equations for Clustered Current Status Data from Family Studies Using Response-Dependent Sampling," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(1), pages 160-183, April.
    6. Xu, Yang & Zhao, Shishun & Hu, Tao & Sun, Jianguo, 2021. "Variable selection for generalized odds rate mixture cure models with interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    7. Lianming Wang & David B. Dunson, 2010. "Semiparametric Bayes Multiple Testing: Applications to Tumor Data," Biometrics, The International Biometric Society, vol. 66(2), pages 493-501, June.
    8. Sedigheh Mirzaei Salehabadi & Debasis Sengupta & Rituparna Das, 2015. "Parametric Estimation of Menarcheal Age Distribution Based on Recall Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 290-305, March.
    9. Prabhashi W. Withana Gamage & Christopher S. McMahan & Lianming Wang, 2023. "A flexible parametric approach for analyzing arbitrarily censored data that are potentially subject to left truncation under the proportional hazards model," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(1), pages 188-212, January.
    10. Jessica G. Young & Nicholas P. Jewell & Steven J. Samuels, 2008. "Regression Analysis of a Disease Onset Distribution Using Diagnosis Data," Biometrics, The International Biometric Society, vol. 64(1), pages 20-28, March.
    11. Minggen Lu & Christopher S. McMahan, 2018. "A partially linear proportional hazards model for current status data," Biometrics, The International Biometric Society, vol. 74(4), pages 1240-1249, December.
    12. Donglin Zeng & Fei Gao & D. Y. Lin, 2017. "Maximum likelihood estimation for semiparametric regression models with multivariate interval-censored data," Biometrika, Biometrika Trust, vol. 104(3), pages 505-525.
    13. Chunling Wang & Xiaoyan Lin, 2022. "Bayesian Semiparametric Regression Analysis of Multivariate Panel Count Data," Stats, MDPI, vol. 5(2), pages 1-17, May.
    14. Kouros Owzar & Sin-Ho Jung & Pranab Kumar Sen, 2007. "A Copula Approach for Detecting Prognostic Genes Associated With Survival Outcome in Microarray Studies," Biometrics, The International Biometric Society, vol. 63(4), pages 1089-1098, December.
    15. González, M. & Minuesa, C. & del Puerto, I., 2016. "Maximum likelihood estimation and expectation–maximization algorithm for controlled branching processes," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 209-227.
    16. Cai, Bo & Dunson, David B., 2007. "Bayesian Multivariate Isotonic Regression Splines: Applications to Carcinogenicity Studies," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1158-1171, December.
    17. Petti, Danilo & Eletti, Alessia & Marra, Giampiero & Radice, Rosalba, 2022. "Copula link-based additive models for bivariate time-to-event outcomes with general censoring scheme," Computational Statistics & Data Analysis, Elsevier, vol. 175(C).
    18. Tao Sun & Yu Cheng & Ying Ding, 2023. "An information ratio‐based goodness‐of‐fit test for copula models on censored data," Biometrics, The International Biometric Society, vol. 79(3), pages 1713-1725, September.
    19. A. John Bailer & Walter W. Piegorsch, 2000. "From Quantal Counts to Mechanisms and Systems: The Past, Present, and Future of Biometrics in Environmental Toxicology," Biometrics, The International Biometric Society, vol. 56(2), pages 327-336, June.
    20. Kaeding, Matthias, 2020. "Efficient Bayesian nonparametric hazard regression," Ruhr Economic Papers 850, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:74:y:2018:i:1:p:68-76. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.