IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v72y2016i4p1369-1377.html
   My bibliography  Save this article

Moment reconstruction and moment‐adjusted imputation when exposure is generated by a complex, nonlinear random effects modeling process

Author

Listed:
  • Cornelis J. Potgieter
  • Rubin Wei
  • Victor Kipnis
  • Laurence S. Freedman
  • Raymond J. Carroll

Abstract

For the classical, homoscedastic measurement error model, moment reconstruction (Freedman et al., 2004, 2008) and moment‐adjusted imputation (Thomas et al., 2011) are appealing, computationally simple imputation‐like methods for general model fitting. Like classical regression calibration, the idea is to replace the unobserved variable subject to measurement error with a proxy that can be used in a variety of analyses. Moment reconstruction and moment‐adjusted imputation differ from regression calibration in that they attempt to match multiple features of the latent variable, and also to match some of the latent variable's relationships with the response and additional covariates. In this note, we consider a problem where true exposure is generated by a complex, nonlinear random effects modeling process, and develop analogues of moment reconstruction and moment‐adjusted imputation for this case. This general model includes classical measurement errors, Berkson measurement errors, mixtures of Berkson and classical errors and problems that are not measurement error problems, but also cases where the data‐generating process for true exposure is a complex, nonlinear random effects modeling process. The methods are illustrated using the National Institutes of Health–AARP Diet and Health Study where the latent variable is a dietary pattern score called the Healthy Eating Index‐2005. We also show how our general model includes methods used in radiation epidemiology as a special case. Simulations are used to illustrate the methods.

Suggested Citation

  • Cornelis J. Potgieter & Rubin Wei & Victor Kipnis & Laurence S. Freedman & Raymond J. Carroll, 2016. "Moment reconstruction and moment‐adjusted imputation when exposure is generated by a complex, nonlinear random effects modeling process," Biometrics, The International Biometric Society, vol. 72(4), pages 1369-1377, December.
  • Handle: RePEc:bla:biomet:v:72:y:2016:i:4:p:1369-1377
    DOI: 10.1111/biom.12524
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12524
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12524?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Laine Thomas & Leonard Stefanski & Marie Davidian, 2011. "A Moment-Adjusted Imputation Method for Measurement Error Models," Biometrics, The International Biometric Society, vol. 67(4), pages 1461-1470, December.
    2. Elizabeth A. Sugar & Ching-Yun Wang & Ross L. Prentice, 2007. "Logistic Regression with Exposure Biomarkers and Flexible Measurement Error," Biometrics, The International Biometric Society, vol. 63(1), pages 143-151, March.
    3. Susanne M. Schennach, 2013. "Regressions with Berkson errors in covariates - A nonparametric approach," Papers 1308.2836, arXiv.org.
    4. Victor Kipnis & Douglas Midthune & Dennis W. Buckman & Kevin W. Dodd & Patricia M. Guenther & Susan M. Krebs-Smith & Amy F. Subar & Janet A. Tooze & Raymond J. Carroll & Laurence S. Freedman, 2009. "Modeling Data with Excess Zeros and Measurement Error: Application to Evaluating Relationships between Episodically Consumed Foods and Health Outcomes," Biometrics, The International Biometric Society, vol. 65(4), pages 1003-1010, December.
    5. Aurore Delaigle & Peter Hall & Peihua Qiu, 2006. "Nonparametric methods for solving the Berkson errors‐in‐variables problem," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(2), pages 201-220, April.
    6. Laurence S. Freedman & Vitaly Fainberg & Victor Kipnis & Douglas Midthune & Raymond J. Carroll, 2004. "A New Method for Dealing with Measurement Error in Explanatory Variables of Regression Models," Biometrics, The International Biometric Society, vol. 60(1), pages 172-181, March.
    7. Bani Mallick & F. Owen Hoffman & Raymond J. Carroll, 2002. "Semiparametric Regression Modeling with Mixtures of Berkson and Classical Error, with Application to Fallout from the Nevada Test Site," Biometrics, The International Biometric Society, vol. 58(1), pages 13-20, March.
    8. Thomas, Laine & Stefanski, Leonard A. & Davidian, Marie, 2013. "Moment adjusted imputation for multivariate measurement error data with applications to logistic regression," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 15-24.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Susanne M. Schennach, 2013. "Regressions with Berkson errors in covariates - A nonparametric approach," Papers 1308.2836, arXiv.org.
    2. Raymond J. Carroll & Aurore Delaigle & Peter Hall, 2007. "Non‐parametric regression estimation from data contaminated by a mixture of Berkson and classical errors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 859-878, November.
    3. Susanne M. Schennach, 2012. "Measurement error in nonlinear models - a review," CeMMAP working papers 41/12, Institute for Fiscal Studies.
    4. Katharina Proksch & Nicolai Bissantz & Hajo Holzmann, 2022. "Simultaneous inference for Berkson errors-in-variables regression under fixed design," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(4), pages 773-800, August.
    5. Yin, Zanhua & Gao, Wei & Tang, Man-Lai & Tian, Guo-Liang, 2013. "Estimation of nonparametric regression models with a mixture of Berkson and classical errors," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1151-1162.
    6. Richard Blundell & Joel Horowitz & Matthias Parey, 2022. "Estimation of a Heterogeneous Demand Function with Berkson Errors," The Review of Economics and Statistics, MIT Press, vol. 104(5), pages 877-889, December.
    7. Pierre Dubois & Rachel Griffith & Martin O'Connell, 2020. "How Well Targeted Are Soda Taxes?," American Economic Review, American Economic Association, vol. 110(11), pages 3661-3704, November.
    8. Erica Ponzi & Paolo Vineis & Kian Fan Chung & Marta Blangiardo, 2020. "Accounting for measurement error to assess the effect of air pollution on omic signals," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-16, January.
    9. Nicholas Beyler & Susanne James-Burdumy & Martha Bleeker & Jane Fortson & Max Benjamin, "undated". "Measurement Error Properties in an Accelerometer Sample of U.S. Elementary School Children," Mathematica Policy Research Reports 6c99580fa94443459f3cbd005, Mathematica Policy Research.
    10. Ching-Yun Wang & Jean de Dieu Tapsoba & Catherine Duggan & Anne McTiernan, 2024. "Generalized Linear Models with Covariate Measurement Error and Zero-Inflated Surrogates," Mathematics, MDPI, vol. 12(2), pages 1-14, January.
    11. Richard Blundell & Joel L. Horowitz & Matthias Parey, 2018. "Estimation of a nonseparable heterogenous demand function with shape restrictions and Berkson errors," CeMMAP working papers CWP67/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. Yehua Li & Annamaria Guolo & F. Owen Hoffman & Raymond J. Carroll, 2007. "Shared Uncertainty in Measurement Error Problems, with Application to Nevada Test Site Fallout Data," Biometrics, The International Biometric Society, vol. 63(4), pages 1226-1236, December.
    13. Jackson, Chris & Mosleh, Ali, 2016. "Bayesian inference with overlapping data: Reliability estimation of multi-state on-demand continuous life metric systems with uncertain evidence," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 124-135.
    14. repec:mpr:mprres:7903 is not listed on IDEAS
    15. Carolyn Anderson & Hsiu-Ting Yu, 2007. "Log-Multiplicative Association Models as Item Response Models," Psychometrika, Springer;The Psychometric Society, vol. 72(1), pages 5-23, March.
    16. Yuan-chin Chang, 2011. "Sequential estimation in generalized linear models when covariates are subject to errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 73(1), pages 93-120, January.
    17. C. Y. Wang, 2008. "Non‐parametric Maximum Likelihood Estimation for Cox Regression with Subject‐Specific Measurement Error," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(4), pages 613-628, December.
    18. Taraneh Abarin & Liqun Wang, 2012. "Instrumental variable approach to covariate measurement error in generalized linear models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(3), pages 475-493, June.
    19. Pei Geng & Hira L. Koul, 2019. "Minimum distance model checking in Berkson measurement error models with validation data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 879-899, September.
    20. Raymond J. Carroll, 2003. "Variances Are Not Always Nuisance Parameters," Biometrics, The International Biometric Society, vol. 59(2), pages 211-220, June.
    21. Colubi, Ana & González-Rodri­guez, Gil & Domi­nguez-Cuesta, Mari­a José & Jiménez-Sánchez, Montserrat, 2008. "Favorability functions based on kernel density estimation for logistic models: A case study," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4533-4543, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:72:y:2016:i:4:p:1369-1377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.