IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0190792.html
   My bibliography  Save this article

Shared and unshared exposure measurement error in occupational cohort studies and their effects on statistical inference in proportional hazards models

Author

Listed:
  • Sabine Hoffmann
  • Dominique Laurier
  • Estelle Rage
  • Chantal Guihenneuc
  • Sophie Ancelet

Abstract

Exposure measurement error represents one of the most important sources of uncertainty in epidemiology. When exposure uncertainty is not or only poorly accounted for, it can lead to biased risk estimates and a distortion of the shape of the exposure-response relationship. In occupational cohort studies, the time-dependent nature of exposure and changes in the method of exposure assessment may create complex error structures. When a method of group-level exposure assessment is used, individual worker practices and the imprecision of the instrument used to measure the average exposure for a group of workers may give rise to errors that are shared between workers, within workers or both. In contrast to unshared measurement error, the effects of shared errors remain largely unknown. Moreover, exposure uncertainty and magnitude of exposure are typically highest for the earliest years of exposure. We conduct a simulation study based on exposure data of the French cohort of uranium miners to compare the effects of shared and unshared exposure uncertainty on risk estimation and on the shape of the exposure-response curve in proportional hazards models. Our results indicate that uncertainty components shared within workers cause more bias in risk estimation and a more severe attenuation of the exposure-response relationship than unshared exposure uncertainty or exposure uncertainty shared between individuals. These findings underline the importance of careful characterisation and modeling of exposure uncertainty in observational studies.

Suggested Citation

  • Sabine Hoffmann & Dominique Laurier & Estelle Rage & Chantal Guihenneuc & Sophie Ancelet, 2018. "Shared and unshared exposure measurement error in occupational cohort studies and their effects on statistical inference in proportional hazards models," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-22, February.
  • Handle: RePEc:plo:pone00:0190792
    DOI: 10.1371/journal.pone.0190792
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0190792
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0190792&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0190792?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sander Greenland & Heidi J. Fischer & Leeka Kheifets, 2016. "Methods to Explore Uncertainty and Bias Introduced by Job Exposure Matrices," Risk Analysis, John Wiley & Sons, vol. 36(1), pages 74-82, January.
    2. Zhuo Zhang & Dale L Preston & Mikhail Sokolnikov & Bruce A Napier & Marina Degteva & Brian Moroz & Vadim Vostrotin & Elena Shiskina & Alan Birchall & Daniel O Stram, 2017. "Correction of confidence intervals in excess relative risk models using Monte Carlo dosimetry systems with shared errors," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-18, April.
    3. Bani Mallick & F. Owen Hoffman & Raymond J. Carroll, 2002. "Semiparametric Regression Modeling with Mixtures of Berkson and Classical Error, with Application to Fallout from the Nevada Test Site," Biometrics, The International Biometric Society, vol. 58(1), pages 13-20, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jackson, Chris & Mosleh, Ali, 2016. "Bayesian inference with overlapping data: Reliability estimation of multi-state on-demand continuous life metric systems with uncertain evidence," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 124-135.
    2. Raymond J. Carroll, 2003. "Variances Are Not Always Nuisance Parameters," Biometrics, The International Biometric Society, vol. 59(2), pages 211-220, June.
    3. Yin, Zanhua & Gao, Wei & Tang, Man-Lai & Tian, Guo-Liang, 2013. "Estimation of nonparametric regression models with a mixture of Berkson and classical errors," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1151-1162.
    4. Duchwan Ryu & Erning Li & Bani K. Mallick, 2011. "Bayesian Nonparametric Regression Analysis of Data with Random Effects Covariates from Longitudinal Measurements," Biometrics, The International Biometric Society, vol. 67(2), pages 454-466, June.
    5. Susanne M. Schennach, 2013. "Regressions with Berkson errors in covariates - A nonparametric approach," Papers 1308.2836, arXiv.org.
    6. Erica Ponzi & Paolo Vineis & Kian Fan Chung & Marta Blangiardo, 2020. "Accounting for measurement error to assess the effect of air pollution on omic signals," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-16, January.
    7. Raymond J. Carroll & Aurore Delaigle & Peter Hall, 2007. "Non‐parametric regression estimation from data contaminated by a mixture of Berkson and classical errors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 859-878, November.
    8. Yehua Li & Annamaria Guolo & F. Owen Hoffman & Raymond J. Carroll, 2007. "Shared Uncertainty in Measurement Error Problems, with Application to Nevada Test Site Fallout Data," Biometrics, The International Biometric Society, vol. 63(4), pages 1226-1236, December.
    9. Kukush Alexander & Shklyar Sergiy & Masiuk Sergii & Likhtarov Illya & Kovgan Lina & Carroll Raymond J & Bouville Andre, 2011. "Methods for Estimation of Radiation Risk in Epidemiological Studies Accounting for Classical and Berkson Errors in Doses," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-30, February.
    10. Cornelis J. Potgieter & Rubin Wei & Victor Kipnis & Laurence S. Freedman & Raymond J. Carroll, 2016. "Moment reconstruction and moment‐adjusted imputation when exposure is generated by a complex, nonlinear random effects modeling process," Biometrics, The International Biometric Society, vol. 72(4), pages 1369-1377, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0190792. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.