A Moment-Adjusted Imputation Method for Measurement Error Models
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Gallant, A Ronald & Nychka, Douglas W, 1987. "Semi-nonparametric Maximum Likelihood Estimation," Econometrica, Econometric Society, vol. 55(2), pages 363-390, March.
- Erning Li & Daowen Zhang & Marie Davidian, 2004. "Conditional Estimation for Generalized Linear Models When Covariates Are Subject-Specific Parameters in a Mixed Model for Longitudinal Measurements," Biometrics, The International Biometric Society, vol. 60(1), pages 1-7, March.
- Daowen Zhang & Marie Davidian, 2001. "Linear Mixed Models with Flexible Distributions of Random Effects for Longitudinal Data," Biometrics, The International Biometric Society, vol. 57(3), pages 795-802, September.
- Laurence S. Freedman & Vitaly Fainberg & Victor Kipnis & Douglas Midthune & Raymond J. Carroll, 2004. "A New Method for Dealing with Measurement Error in Explanatory Variables of Regression Models," Biometrics, The International Biometric Society, vol. 60(1), pages 172-181, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- John P. Buonaccorsi & Giovanni Romeo & Magne Thoresen, 2018. "Model†based bootstrapping when correcting for measurement error with application to logistic regression," Biometrics, The International Biometric Society, vol. 74(1), pages 135-144, March.
- Cornelis J. Potgieter & Rubin Wei & Victor Kipnis & Laurence S. Freedman & Raymond J. Carroll, 2016. "Moment reconstruction and moment‐adjusted imputation when exposure is generated by a complex, nonlinear random effects modeling process," Biometrics, The International Biometric Society, vol. 72(4), pages 1369-1377, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lamarche, Carlos & Shi, Xuan & Young, Derek S., 2024. "Conditional Quantile Functions for Zero-Inflated Longitudinal Count Data," Econometrics and Statistics, Elsevier, vol. 31(C), pages 49-65.
- Xianzheng Huang & Leonard A. Stefanski & Marie Davidian, 2009. "Latent-Model Robustness in Joint Models for a Primary Endpoint and a Longitudinal Process," Biometrics, The International Biometric Society, vol. 65(3), pages 719-727, September.
- Li, Erning & Pourahmadi, Mohsen, 2013. "An alternative REML estimation of covariance matrices in linear mixed models," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1071-1077.
- Brent A Coull, 2011. "A Random Intercepts–Functional Slopes Model for Flexible Assessment of Susceptibility in Longitudinal Designs," Biometrics, The International Biometric Society, vol. 67(2), pages 486-494, June.
- Jaeun Choi & Donglin Zeng & Andrew F. Olshan & Jianwen Cai, 2018. "Joint modeling of survival time and longitudinal outcomes with flexible random effects," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(1), pages 126-152, January.
- Min Zhang & Marie Davidian, 2008. "“Smooth” Semiparametric Regression Analysis for Arbitrarily Censored Time-to-Event Data," Biometrics, The International Biometric Society, vol. 64(2), pages 567-576, June.
- Weiping Zhang & MengMeng Zhang & Yu Chen, 2020. "A Copula-Based GLMM Model for Multivariate Longitudinal Data with Mixed-Types of Responses," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 353-379, November.
- Bernhardt, Paul W. & Wang, Huixia Judy & Zhang, Daowen, 2014. "Flexible modeling of survival data with covariates subject to detection limits via multiple imputation," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 81-91.
- Xiao Song & Marie Davidian & Anastasios A. Tsiatis, 2002. "A Semiparametric Likelihood Approach to Joint Modeling of Longitudinal and Time-to-Event Data," Biometrics, The International Biometric Society, vol. 58(4), pages 742-753, December.
- Ho, Remus K.W. & Hu, Inchi, 2008. "Flexible modelling of random effects in linear mixed models--A Bayesian approach," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1347-1361, January.
- Li, Erning & Zhang, Daowen & Davidian, Marie, 2007. "Likelihood and pseudo-likelihood methods for semiparametric joint models for a primary endpoint and longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5776-5790, August.
- Scolas, Sylvie & El Ghouch, Anouar & Legrand, Catherine, 2016. "The SNP representation in mixture cure models with interval-censoring: estimation and goodness-of-fit testing," LIDAM Discussion Papers ISBA 2016049, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Pieter J. van der Sluis, 1997. "Post-Sample Prediction Tests for the Efficient Method of Moments," Tinbergen Institute Discussion Papers 97-054/4, Tinbergen Institute.
- Cooper, Joseph C., 2002. "Flexible Functional Form Estimation of Willingness to Pay Using Dichotomous Choice Data," Journal of Environmental Economics and Management, Elsevier, vol. 43(2), pages 267-279, March.
- Nguimkeu, Pierre & Denteh, Augustine & Tchernis, Rusty, 2019.
"On the estimation of treatment effects with endogenous misreporting,"
Journal of Econometrics, Elsevier, vol. 208(2), pages 487-506.
- Pierre Nguimkeu & Augustine Denteh & Rusty Tchernis, 2017. "On the Estimation of Treatment Effects with Endogenous Misreporting," NBER Working Papers 24117, National Bureau of Economic Research, Inc.
- Pierre Nguimkeu & Augustine Denteh & Rusty Tchernis, 2018. "On the Estimation of Treatment Effects with Endogenous Misreporting," Working Papers 2018-019, Human Capital and Economic Opportunity Working Group.
- Nguimkeu, Pierre & Denteh, Augustine & Tchernis, Rusty, 2018. "On the Estimation of Treatment Effects with Endogenous Misreporting," IZA Discussion Papers 11426, Institute of Labor Economics (IZA).
- Kalouptsidis, N. & Psaraki, V., 2010. "Approximations of choice probabilities in mixed logit models," European Journal of Operational Research, Elsevier, vol. 200(2), pages 529-535, January.
- repec:ebl:ecbull:v:3:y:2008:i:42:p:1-13 is not listed on IDEAS
- Yang Lu, 2019.
"Flexible (panel) regression models for bivariate count–continuous data with an insurance application,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1503-1521, October.
- Yang Lu, 2019. "Flexible (panel) regression models for bivariate count-continuous data with an insurance application," Post-Print hal-02419024, HAL.
- Fosgerau, Mogens & Bierlaire, Michel, 2007.
"A practical test for the choice of mixing distribution in discrete choice models,"
Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 784-794, August.
- Mogens Fosgerau & Michel Bierlaire, 2005. "A practical test for the choice of mixing distribution in a discrete choice model," Econometrics 0512002, University Library of Munich, Germany.
- Fosgerau, Mogens & Bierlaire, Michel, 2007. "A practical test for the choice of mixing distribution in discrete choice models," MPRA Paper 42276, University Library of Munich, Germany.
- Čížek, Pavel, 2008.
"General Trimmed Estimation: Robust Approach To Nonlinear And Limited Dependent Variable Models,"
Econometric Theory, Cambridge University Press, vol. 24(6), pages 1500-1529, December.
- Cizek, P., 2004. "General Trimmed Estimation : Robust Approach to Nonlinear and Limited Dependent Variable Models," Discussion Paper 2004-130, Tilburg University, Center for Economic Research.
- Cizek, P., 2004. "General Trimmed Estimation : Robust Approach to Nonlinear and Limited Dependent Variable Models," Other publications TiSEM 646b48cc-6bdc-4b93-bc20-7, Tilburg University, School of Economics and Management.
- Brenda Castillo-Brais & Ángel León & Juan Mora, 2022. "Estimating Value-at-Risk and Expected Shortfall: Do Polynomial Expansions Outperform Parametric Densities?," Mathematics, MDPI, vol. 10(22), pages 1-17, November.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:67:y:2011:i:4:p:1461-1470. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.