Pólya‐gamma data augmentation and latent variable models for multivariate binomial data
Author
Abstract
Suggested Citation
DOI: 10.1111/rssc.12528
Download full text from publisher
References listed on IDEAS
- repec:bfi:wpaper:2014-014 is not listed on IDEAS
- Conti, Gabriella & Frühwirth-Schnatter, Sylvia & Heckman, James J. & Piatek, Rémi, 2014.
"Bayesian exploratory factor analysis,"
Journal of Econometrics, Elsevier, vol. 183(1), pages 31-57.
- Gabriella Conti & Sylvia Frühwirth-Schnatter & James J. Heckman & Rémi Piatek, 2014. "Bayesian Exploratory Factor Analysis," NRN working papers 2014-08, The Austrian Center for Labor Economics and the Analysis of the Welfare State, Johannes Kepler University Linz, Austria.
- Gabriella Conti & Sylvia Frühwirth-Schnatter & James Heckman & Rémi Piatek, 2014. "Bayesian exploratory factor analysis," CeMMAP working papers 30/14, Institute for Fiscal Studies.
- Gabriella Conti & Sylvia Frühwirth-Schnatter & James Heckman & Rémi Piatek, 2014. "Bayesian exploratory factor analysis," CeMMAP working papers CWP30/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Conti, Gabriella & Frühwirth-Schnatter, Sylvia & Heckman, James J. & Piatek, Rémi, 2014. "Bayesian Exploratory Factor Analysis," IZA Discussion Papers 8338, Institute of Labor Economics (IZA).
- Gabriella Conti & Sylvia Fruehwirth-Schnatter & James J. Heckman & Remi Piatek, 2014. "Bayesian Exploratory Factor Analysis," Working Papers 2014-014, Human Capital and Economic Opportunity Working Group.
- Nick Patterson & Alkes L Price & David Reich, 2006. "Population Structure and Eigenanalysis," PLOS Genetics, Public Library of Science, vol. 2(12), pages 1-20, December.
- Nicholas G. Polson & James G. Scott & Jesse Windle, 2013. "Bayesian Inference for Logistic Models Using Pólya--Gamma Latent Variables," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1339-1349, December.
- Michael E. Tipping & Christopher M. Bishop, 1999. "Probabilistic Principal Component Analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 611-622.
- de Leeuw, Jan, 2006. "Principal component analysis of binary data by iterated singular value decomposition," Computational Statistics & Data Analysis, Elsevier, vol. 50(1), pages 21-39, January.
- Li Cai, 2010. "Metropolis-Hastings Robbins-Monro Algorithm for Confirmatory Item Factor Analysis," Journal of Educational and Behavioral Statistics, , vol. 35(3), pages 307-335, June.
- Brent A. Coull & Alan Agresti, 2000. "Random Effects Modeling of Multiple Binomial Responses Using the Multivariate Binomial Logit-Normal Distribution," Biometrics, The International Biometric Society, vol. 56(1), pages 73-80, March.
- P. Richard Hahn & Carlos M. Carvalho & James G. Scott, 2012. "A sparse factor analytic probit model for congressional voting patterns," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 61(4), pages 619-635, August.
- Asim Ansari & Kamel Jedidi, 2000. "Bayesian factor analysis for multilevel binary observations," Psychometrika, Springer;The Psychometric Society, vol. 65(4), pages 475-496, December.
- Caughey, Devin & Warshaw, Christopher, 2015. "Dynamic Estimation of Latent Opinion Using a Hierarchical Group-Level IRT Model," Political Analysis, Cambridge University Press, vol. 23(2), pages 197-211, April.
- Anders Christoffersson, 1975. "Factor analysis of dichotomized variables," Psychometrika, Springer;The Psychometric Society, vol. 40(1), pages 5-32, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Landgraf, Andrew J. & Lee, Yoonkyung, 2020. "Dimensionality reduction for binary data through the projection of natural parameters," Journal of Multivariate Analysis, Elsevier, vol. 180(C).
- Veronika Ročková & Edward I. George, 2016. "Fast Bayesian Factor Analysis via Automatic Rotations to Sparsity," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1608-1622, October.
- Aman Agrawal & Alec M Chiu & Minh Le & Eran Halperin & Sriram Sankararaman, 2020. "Scalable probabilistic PCA for large-scale genetic variation data," PLOS Genetics, Public Library of Science, vol. 16(5), pages 1-19, May.
- Ji Seung Yang & Li Cai, 2014. "Estimation of Contextual Effects Through Nonlinear Multilevel Latent Variable Modeling With a Metropolis–Hastings Robbins–Monro Algorithm," Journal of Educational and Behavioral Statistics, , vol. 39(6), pages 550-582, December.
- Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
- Niko Hauzenberger & Florian Huber, 2020.
"Model instability in predictive exchange rate regressions,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 168-186, March.
- Hauzenberger, Niko & Huber, Florian, 2018. "Model instability in predictive exchange rate regressions," Working Papers in Economics 2018-8, University of Salzburg.
- Hauzenberger, Niko & Huber, Florian, 2018. "Model instability in predictive exchange rate regressions," Department of Economics Working Paper Series 276, WU Vienna University of Economics and Business.
- Niko Hauzenberger & Florian Huber, 2018. "Model instability in predictive exchange rate regressions," Department of Economics Working Papers wuwp276, Vienna University of Economics and Business, Department of Economics.
- Niko Hauzenberger & Florian Huber, 2018. "Model instability in predictive exchange rate regressions," Papers 1811.08818, arXiv.org, revised Dec 2018.
- Wang, Zihan & Daeipour, Mohamad & Xu, Hongyi, 2023. "Quantification and propagation of Aleatoric uncertainties in topological structures," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
- Rub'en Loaiza-Maya & Didier Nibbering, 2022. "Fast variational Bayes methods for multinomial probit models," Papers 2202.12495, arXiv.org, revised Oct 2022.
- Gyaneshwer Chaubey & Anurag Kadian & Saroj Bala & Vadlamudi Raghavendra Rao, 2015. "Genetic Affinity of the Bhil, Kol and Gond Mentioned in Epic Ramayana," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-11, June.
- Anindya Bhadra & Arvind Rao & Veerabhadran Baladandayuthapani, 2018. "Inferring network structure in non†normal and mixed discrete†continuous genomic data," Biometrics, The International Biometric Society, vol. 74(1), pages 185-195, March.
- Daniel Svensson & Matilda Rentoft & Anna M Dahlin & Emma Lundholm & Pall I Olason & Andreas Sjödin & Carin Nylander & Beatrice S Melin & Johan Trygg & Erik Johansson, 2020. "A whole-genome sequenced control population in northern Sweden reveals subregional genetic differences," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-18, September.
- Haoying Wang & Guohui Wu, 2022. "Modeling discrete choices with large fine-scale spatial data: opportunities and challenges," Journal of Geographical Systems, Springer, vol. 24(3), pages 325-351, July.
- Alberto Maydeu-Olivares & Rosa Montaño, 2013. "How Should We Assess the Fit of Rasch-Type Models? Approximating the Power of Goodness-of-Fit Statistics in Categorical Data Analysis," Psychometrika, Springer;The Psychometric Society, vol. 78(1), pages 116-133, January.
- Sylvia Fruhwirth-Schnatter, 2023. "Generalized Cumulative Shrinkage Process Priors with Applications to Sparse Bayesian Factor Analysis," Papers 2303.00473, arXiv.org.
- Xin Xu & Yang Lu & Yupeng Zhou & Zhiguo Fu & Yanjie Fu & Minghao Yin, 2021. "An Information-Explainable Random Walk Based Unsupervised Network Representation Learning Framework on Node Classification Tasks," Mathematics, MDPI, vol. 9(15), pages 1-14, July.
- Wang, Fa, 2017. "Maximum likelihood estimation and inference for high dimensional nonlinear factor models with application to factor-augmented regressions," MPRA Paper 93484, University Library of Munich, Germany, revised 19 May 2019.
- Estavoyer, Maxime & François, Olivier, 2022. "Theoretical analysis of principal components in an umbrella model of intraspecific evolution," Theoretical Population Biology, Elsevier, vol. 148(C), pages 11-21.
- Dorota Toczydlowska & Gareth W. Peters & Man Chung Fung & Pavel V. Shevchenko, 2017. "Stochastic Period and Cohort Effect State-Space Mortality Models Incorporating Demographic Factors via Probabilistic Robust Principal Components," Risks, MDPI, vol. 5(3), pages 1-77, July.
- Felsenstein, Joseph, 2015. "Covariation of gene frequencies in a stepping-stone lattice of populations," Theoretical Population Biology, Elsevier, vol. 100(C), pages 88-97.
- Matteo Barigozzi & Marc Hallin, 2023.
"Dynamic Factor Models: a Genealogy,"
Papers
2310.17278, arXiv.org, revised Jan 2024.
- Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Working Papers ECARES 2023-15, ULB -- Universite Libre de Bruxelles.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:71:y:2022:i:1:p:194-218. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.