IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v74y2022i6d10.1007_s10463-022-00846-2.html
   My bibliography  Save this article

Conditional selective inference for robust regression and outlier detection using piecewise-linear homotopy continuation

Author

Listed:
  • Toshiaki Tsukurimichi

    (Nagoya Institute of Technology)

  • Yu Inatsu

    (Nagoya Institute of Technology)

  • Vo Nguyen Le Duy

    (Nagoya Institute of Technology
    RIKEN)

  • Ichiro Takeuchi

    (Nagoya Institute of Technology
    Nagoya University
    RIKEN Center for Advanced Intelligence Project)

Abstract

In this paper, we consider conditional selective inference (SI) for a linear model estimated after outliers are removed from the data. To apply the conditional SI framework, it is necessary to characterize the events of how the robust method identifies outliers. Unfortunately, the existing conditional SIs cannot be directly applied to our problem because they are applicable to the case where the selection events can be represented by linear or quadratic constraints. We propose a conditional SI method for popular robust regressions such as least-absolute-deviation regression and Huber regression by introducing a new computational method using a convex optimization technique called homotopy method. We show that the proposed conditional SI method is applicable to a wide class of robust regression and outlier detection methods and has good empirical performance on both synthetic data and real data experiments.

Suggested Citation

  • Toshiaki Tsukurimichi & Yu Inatsu & Vo Nguyen Le Duy & Ichiro Takeuchi, 2022. "Conditional selective inference for robust regression and outlier detection using piecewise-linear homotopy continuation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(6), pages 1197-1228, December.
  • Handle: RePEc:spr:aistmt:v:74:y:2022:i:6:d:10.1007_s10463-022-00846-2
    DOI: 10.1007/s10463-022-00846-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-022-00846-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-022-00846-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Srivastava, Muni S. & von Rosen, Dietrich, 1998. "Outliers in Multivariate Regression Models," Journal of Multivariate Analysis, Elsevier, vol. 65(2), pages 195-208, May.
    2. She, Yiyuan & Owen, Art B., 2011. "Outlier Detection Using Nonconvex Penalized Regression," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 626-639.
    3. Leeb, Hannes & Pötscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 21-59, February.
    4. Jian-Xin Pan & Kai-Tai Fang, 1995. "Multiple outlier detection in growth curve model with unstructured covariance matrix," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(1), pages 137-153, January.
    5. Yoav Benjamini & Daniel Yekutieli, 2005. "False Discovery Rate-Adjusted Multiple Confidence Intervals for Selected Parameters," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 71-81, March.
    6. Zaman, Asad & Rousseeuw, Peter J. & Orhan, Mehmet, 2001. "Econometric applications of high-breakdown robust regression techniques," Economics Letters, Elsevier, vol. 71(1), pages 1-8, April.
    7. Hoeting, Jennifer & Raftery, Adrian E. & Madigan, David, 1996. "A method for simultaneous variable selection and outlier identification in linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 22(3), pages 251-270, July.
    8. Roy E. Welsch & Edwin Kuh, 1977. "Linear Regression Diagnostics," NBER Working Papers 0173, National Bureau of Economic Research, Inc.
    9. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    10. Ryan J. Tibshirani & Jonathan Taylor & Richard Lockhart & Robert Tibshirani, 2016. "Exact Post-Selection Inference for Sequential Regression Procedures," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 600-620, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
    2. Gernot Doppelhofer & Melvyn Weeks, 2011. "Robust Growth Determinants," CESifo Working Paper Series 3354, CESifo.
    3. Jelle J Goeman & Aldo Solari, 2024. "On selection and conditioning in multiple testing and selective inference," Biometrika, Biometrika Trust, vol. 111(2), pages 393-416.
    4. Cheng, Tsung-Chi, 2011. "Robust diagnostics for the heteroscedastic regression model," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1845-1866, April.
    5. Baldauf, Markus & Santos Silva, J.M.C., 2012. "On the use of robust regression in econometrics," Economics Letters, Elsevier, vol. 114(1), pages 124-127.
    6. Junlong Zhao & Chao Liu & Lu Niu & Chenlei Leng, 2019. "Multiple influential point detection in high dimensional regression spaces," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 385-408, April.
    7. Rand R. Wilcox, 2018. "Robust regression: an inferential method for determining which independent variables are most important," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(1), pages 100-111, January.
    8. Ganggang Xu & Suojin Wang & Jianhua Z. Huang, 2014. "Focused information criterion and model averaging based on weighted composite quantile regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 365-381, June.
    9. Pavel Čížek, 2013. "Reweighted least trimmed squares: an alternative to one-step estimators," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 514-533, September.
    10. Tianxiang Liu & Ting Kei Pong & Akiko Takeda, 2019. "A refined convergence analysis of $$\hbox {pDCA}_{e}$$ pDCA e with applications to simultaneous sparse recovery and outlier detection," Computational Optimization and Applications, Springer, vol. 73(1), pages 69-100, May.
    11. Ruoyao Shi, 2021. "An Averaging Estimator for Two Step M Estimation in Semiparametric Models," Working Papers 202105, University of California at Riverside, Department of Economics.
    12. Algo Carè & Simone Garatti & Marco C. Campi, 2017. "A coverage theory for least squares," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1367-1389, November.
    13. Soukissian, Takvor H. & Karathanasi, Flora E., 2016. "On the use of robust regression methods in wind speed assessment," Renewable Energy, Elsevier, vol. 99(C), pages 1287-1298.
    14. Ali Charkhi & Gerda Claeskens, 2018. "Asymptotic post-selection inference for the Akaike information criterion," Biometrika, Biometrika Trust, vol. 105(3), pages 645-664.
    15. Akosah, Nana Kwame & Alagidede, Imhotep Paul & Schaling, Eric, 2020. "Testing for asymmetry in monetary policy rule for small-open developing economies: Multiscale Bayesian quantile evidence from Ghana," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    16. Molyneux, Philip & Pancotto, Livia & Reghezza, Alessio & Rodriguez d'Acri, Costanza, 2022. "Interest rate risk and monetary policy normalisation in the euro area," Journal of International Money and Finance, Elsevier, vol. 124(C).
    17. Paul Hewson & Keming Yu, 2008. "Quantile regression for binary performance indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 401-418, September.
    18. Georgios Bertsatos & Plutarchos Sakellaris & Mike G. Tsionas, 2022. "Extensions of the Pesaran, Shin and Smith (2001) bounds testing procedure," Empirical Economics, Springer, vol. 62(2), pages 605-634, February.
    19. Salimata Sissoko, 2011. "Working Paper 03-11 - Niveau de décentralisation de la négociation et structure des salaires," Working Papers 1103, Federal Planning Bureau, Belgium.
    20. Athanasopoulos, George & de Carvalho Guillén, Osmani Teixeira & Issler, João Victor & Vahid, Farshid, 2011. "Model selection, estimation and forecasting in VAR models with short-run and long-run restrictions," Journal of Econometrics, Elsevier, vol. 164(1), pages 116-129, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:74:y:2022:i:6:d:10.1007_s10463-022-00846-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.