IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v23y2018i1d10.1007_s13253-017-0316-3.html
   My bibliography  Save this article

Models for Jointly Estimating Abundances of Two Unmarked Site-Associated Species Subject to Imperfect Detection

Author

Listed:
  • Rafael A. Moral

    (Universidade de São Paulo)

  • John Hinde

    (National University of Ireland)

  • Clarice G. B. Demétrio

    (Universidade de São Paulo)

  • Carolina Reigada

    (Universidade Federal de São Carlos)

  • Wesley A. C. Godoy

    (Universidade de São Paulo)

Abstract

In ecological field surveys, it is often of interest to estimate the abundance of species. It is frequently the case that unmarked animals are counted on different sites over several time occasions. A natural starting point to model these data, while accounting for imperfect detection, is by using Royle’s N-mixture model (Biometrics 60:108–115, 2004). Subsequently, many multivariate extensions have been proposed to model communities as a whole. However, these approaches are used to study species richness and other community-level variables and do not focus on the relationship between two site-associated species. Here, we extend the N-mixture modelling framework to model two site-associated species abundances jointly and propose to measure the influence of one species’ abundance on the populations of the other and study how this changes over time and space. By including a new parameter in the abundance distribution of one of the species, linking it to abundance of the other, our proposed model treats extra variability as an effect induced by an associated species’ abundance and allows one to study how environmental covariates may affect this. Using results from simulation studies, we show that the model is able to recover true parameter estimates. We illustrate our approach using data from bald eagles and mallards obtained in the 2015 survey of the North American Breeding Bird Survey. By using the joint model, we were able to separate overdispersion from mallard-induced variability and hence what would be accounted for with a dispersion parameter in the univariate framework for the eagles was explained by covariates related to mallard abundance in the joint model. Our approach represents an attractive, yet simple, way of modelling site-associated species populations jointly. Conservation ecologists can use the approach to devise management strategies based on the strength of association between species, which may be due to direct interactions and/or environmental effects affecting both species’ populations. Also, mathematical ecologists can use this framework to develop tools for studying population dynamics under different scenarios. Supplementary materials accompanying this paper appear on-line.

Suggested Citation

  • Rafael A. Moral & John Hinde & Clarice G. B. Demétrio & Carolina Reigada & Wesley A. C. Godoy, 2018. "Models for Jointly Estimating Abundances of Two Unmarked Site-Associated Species Subject to Imperfect Detection," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(1), pages 20-38, March.
  • Handle: RePEc:spr:jagbes:v:23:y:2018:i:1:d:10.1007_s13253-017-0316-3
    DOI: 10.1007/s13253-017-0316-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-017-0316-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-017-0316-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Linda M. Haines, 2016. "Maximum likelihood estimation for N‐mixture models," Biometrics, The International Biometric Society, vol. 72(4), pages 1235-1245, December.
    2. Kevin J. Gaston, 2000. "Global patterns in biodiversity," Nature, Nature, vol. 405(6783), pages 220-227, May.
    3. J. Andrew Royle, 2004. "N-Mixture Models for Estimating Population Size from Spatially Replicated Counts," Biometrics, The International Biometric Society, vol. 60(1), pages 108-115, March.
    4. Robert M Dorazio & Edward F Connor, 2014. "Estimating Abundances of Interacting Species Using Morphological Traits, Foraging Guilds, and Habitat," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-9, April.
    5. D. Dail & L. Madsen, 2011. "Models for Estimating Abundance from Repeated Counts of an Open Metapopulation," Biometrics, The International Biometric Society, vol. 67(2), pages 577-587, June.
    6. Kevin McCann & Alan Hastings & Gary R. Huxel, 1998. "Weak trophic interactions and the balance of nature," Nature, Nature, vol. 395(6704), pages 794-798, October.
    7. Emily B. Dennis & Byron J.T. Morgan & Martin S. Ridout, 2015. "Computational aspects of N-mixture models," Biometrics, The International Biometric Society, vol. 71(1), pages 237-246, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Douglas Toledo & Cristiane Akemi Umetsu & Antonio Fernando Monteiro Camargo & Idemauro Antonio Rodrigues Lara, 2022. "Flexible models for non-equidispersed count data: comparative performance of parametric models to deal with underdispersion," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(3), pages 473-497, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Perry J. Williams & Cody Schroeder & Pat Jackson, 2020. "Estimating Reproduction and Survival of Unmarked Juveniles Using Aerial Images and Marked Adults," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(2), pages 133-147, June.
    2. Whitlock, Steven L. & Womble, Jamie N. & Peterson, James T., 2020. "Modelling pinniped abundance and distribution by combining counts at terrestrial sites and in-water sightings," Ecological Modelling, Elsevier, vol. 420(C).
    3. Xiaoli Fan & Miguel I. Gómez & Shady S. Atallah & Jon M. Conrad, 2020. "A Bayesian State‐Space Approach for Invasive Species Management: The Case of Spotted Wing Drosophila," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(4), pages 1227-1244, August.
    4. Emily B. Dennis & Byron J.T. Morgan & Martin S. Ridout, 2015. "Computational aspects of N-mixture models," Biometrics, The International Biometric Society, vol. 71(1), pages 237-246, March.
    5. Linda M. Haines, 2016. "Maximum likelihood estimation for N‐mixture models," Biometrics, The International Biometric Society, vol. 72(4), pages 1235-1245, December.
    6. Duarte, Adam & Adams, Michael J. & Peterson, James T., 2018. "Fitting N-mixture models to count data with unmodeled heterogeneity: Bias, diagnostics, and alternative approaches," Ecological Modelling, Elsevier, vol. 374(C), pages 51-59.
    7. Matthew R. P. Parker & Laura L. E. Cowen & Jiguo Cao & Lloyd T. Elliott, 2023. "Computational Efficiency and Precision for Replicated-Count and Batch-Marked Hidden Population Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(1), pages 43-58, March.
    8. Laura L. E. Cowen & Panagiotis Besbeas & Byron J. T. Morgan & Carl J. Schwarz, 2017. "Hidden Markov models for extended batch data," Biometrics, The International Biometric Society, vol. 73(4), pages 1321-1331, December.
    9. Richard J. Barker & Matthew R. Schofield & William A. Link & John R. Sauer, 2018. "On the reliability of N†mixture models for count data," Biometrics, The International Biometric Society, vol. 74(1), pages 369-377, March.
    10. Linda M. Haines, 2016. "A Note on the Royle–Nichols Model for Repeated Detection–Nondetection Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 588-598, September.
    11. Bernard W T Coetzee & Kevin J Gaston & Steven L Chown, 2014. "Local Scale Comparisons of Biodiversity as a Test for Global Protected Area Ecological Performance: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-11, August.
    12. Poonam Tripathi & Mukund Dev Behera & Partha Sarathi Roy, 2017. "Optimized grid representation of plant species richness in India—Utility of an existing national database in integrated ecological analysis," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-13, March.
    13. Oliver Reader, M. & Eppinga, Maarten B. & de Boer, Hugo J. & Petchey, Owen L. & Santos, Maria J., 2024. "Consistent ecosystem service bundles emerge across global mountain, island and delta systems," Ecosystem Services, Elsevier, vol. 66(C).
    14. Zhenhua Luo & Songhua Tang & Chunwang Li & Jing Chen & Hongxia Fang & Zhigang Jiang, 2011. "Do Rapoport's Rule, Mid-Domain Effect or Environmental Factors Predict Latitudinal Range Size Patterns of Terrestrial Mammals in China?," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-9, November.
    15. Dai, Chuanjun & Zhao, Min & Chen, Lansun, 2012. "Complex dynamic behavior of three-species ecological model with impulse perturbations and seasonal disturbances," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 84(C), pages 83-97.
    16. Steen, Valerie A. & Duarte, Adam & Peterson, James T., 2023. "An evaluation of multistate occupancy models for estimating relative abundance and population trends," Ecological Modelling, Elsevier, vol. 478(C).
    17. George Van Voorn & Geerten Hengeveld & Jan Verhagen, 2020. "An agent based model representation to assess resilience and efficiency of food supply chains," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-27, November.
    18. Mevin B. Hooten & Christopher K. Wikle & Robert M. Dorazio & J. Andrew Royle, 2007. "Hierarchical Spatiotemporal Matrix Models for Characterizing Invasions," Biometrics, The International Biometric Society, vol. 63(2), pages 558-567, June.
    19. Simona-Roxana Ulman & Costica Mihai & Cristina Cautisanu, 2020. "Peculiarities of the Relation between Human and Environmental Wellbeing in Different Stages of National Development," Sustainability, MDPI, vol. 12(19), pages 1-26, October.
    20. Dina in ‘t Zandt & Zuzana Kolaříková & Tomáš Cajthaml & Zuzana Münzbergová, 2023. "Plant community stability is associated with a decoupling of prokaryote and fungal soil networks," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:23:y:2018:i:1:d:10.1007_s13253-017-0316-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.