IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v78y2022i4p1305-1308.html
   My bibliography  Save this article

Discussion on “Spatial+: a novel approach to spatial confounding” by Emiko Dupont, Simon N. Wood, and Nicole H. Augustin

Author

Listed:
  • Georgia Papadogeorgou

Abstract

I congratulate Dupont, Wood, and Augustin (DWA hereon) for providing an easy‐to‐implement method for estimation in the presence of spatial confounding, and for addressing some of the complicated aspects on the topic. I discuss conceptual and operational issues that are fundamental to inference in spatial settings: (i) the target quantity and its interpretability, (ii) the nonspatial aspect of covariates and their relative spatial scales, and (iii) the impact of spatial smoothing. While DWA provide some insights on these issues, I believe that the audience might benefit from a deeper discussion.

Suggested Citation

  • Georgia Papadogeorgou, 2022. "Discussion on “Spatial+: a novel approach to spatial confounding” by Emiko Dupont, Simon N. Wood, and Nicole H. Augustin," Biometrics, The International Biometric Society, vol. 78(4), pages 1305-1308, December.
  • Handle: RePEc:bla:biomet:v:78:y:2022:i:4:p:1305-1308
    DOI: 10.1111/biom.13655
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13655
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13655?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hauke Thaden & Thomas Kneib, 2018. "Structural Equation Models for Dealing With Spatial Confounding," The American Statistician, Taylor & Francis Journals, vol. 72(3), pages 239-252, July.
    2. Rune Christiansen & Matthias Baumann & Tobias Kuemmerle & Miguel D. Mahecha & Jonas Peters, 2022. "Toward Causal Inference for Spatio-Temporal Data: Conflict and Forest Loss in Colombia," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(538), pages 591-601, April.
    3. Chi Wang & Giovanni Parmigiani & Francesca Dominici, 2012. "Bayesian Effect Estimation Accounting for Adjustment Uncertainty," Biometrics, The International Biometric Society, vol. 68(3), pages 661-671, September.
    4. Chi Wang & Giovanni Parmigiani & Francesca Dominici, 2012. "Rejoinder: Bayesian Effect Estimation Accounting for Adjustment Uncertainty," Biometrics, The International Biometric Society, vol. 68(3), pages 680-686, September.
    5. Hodges, James S. & Reich, Brian J., 2010. "Adding Spatially-Correlated Errors Can Mess Up the Fixed Effect You Love," The American Statistician, American Statistical Association, vol. 64(4), pages 325-334.
    6. Brian J. Reich & Shu Yang & Yawen Guan & Andrew B. Giffin & Matthew J. Miller & Ana Rappold, 2021. "A Review of Spatial Causal Inference Methods for Environmental and Epidemiological Applications," International Statistical Review, International Statistical Institute, vol. 89(3), pages 605-634, December.
    7. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "Inference on Treatment Effects after Selection among High-Dimensional Controlsâ€," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(2), pages 608-650.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jennifer F. Bobb & Maricela F. Cruz & Stephen J. Mooney & Adam Drewnowski & David Arterburn & Andrea J. Cook, 2022. "Accounting for spatial confounding in epidemiological studies with individual‐level exposures: An exposure‐penalized spline approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1271-1293, July.
    2. Antonelli Joseph & Cefalu Matthew, 2020. "Averaging causal estimators in high dimensions," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 92-107, January.
    3. Agboola, Oluwagbenga David & Yu, Han, 2023. "Neighborhood-based cross fitting approach to treatment effects with high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).
    4. Adam A. Szpiro & Lianne Sheppard & Sara D. Adar & Joel D. Kaufman, 2014. "Estimating acute air pollution health effects from cohort study data," Biometrics, The International Biometric Society, vol. 70(1), pages 164-174, March.
    5. Brian J. Reich & Shu Yang & Yawen Guan & Andrew B. Giffin & Matthew J. Miller & Ana Rappold, 2021. "A Review of Spatial Causal Inference Methods for Environmental and Epidemiological Applications," International Statistical Review, International Statistical Institute, vol. 89(3), pages 605-634, December.
    6. Ander Wilson & Brian J. Reich, 2014. "Confounder selection via penalized credible regions," Biometrics, The International Biometric Society, vol. 70(4), pages 852-861, December.
    7. Xun Lu, 2015. "A Covariate Selection Criterion for Estimation of Treatment Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 506-522, October.
    8. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    9. Eric Yanchenko & Howard D. Bondell & Brian J. Reich, 2024. "Spatial regression modeling via the R2D2 framework," Environmetrics, John Wiley & Sons, Ltd., vol. 35(2), March.
    10. Lefebvre, Geneviève & Atherton, Juli & Talbot, Denis, 2014. "The effect of the prior distribution in the Bayesian Adjustment for Confounding algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 227-240.
    11. M.J. Daniels & C. Wang & B.H. Marcus, 2014. "Fully Bayesian inference under ignorable missingness in the presence of auxiliary covariates," Biometrics, The International Biometric Society, vol. 70(1), pages 62-72, March.
    12. Paola Berchialla & Veronica Sciannameo & Sara Urru & Corrado Lanera & Danila Azzolina & Dario Gregori & Ileana Baldi, 2021. "Adjustment for Baseline Covariates to Increase Efficiency in RCTs with Binary Endpoint: A Comparison of Bayesian and Frequentist Approaches," IJERPH, MDPI, vol. 18(15), pages 1-9, July.
    13. Brian J. Reich & Shu Yang & Yawen Guan, 2022. "Discussion on “Spatial+: A novel approach to spatial confounding” by Dupont, Wood, and Augustin," Biometrics, The International Biometric Society, vol. 78(4), pages 1291-1294, December.
    14. Emiko Dupont & Simon N. Wood & Nicole H. Augustin, 2022. "Spatial+: A novel approach to spatial confounding," Biometrics, The International Biometric Society, vol. 78(4), pages 1279-1290, December.
    15. Isa Marques & Thomas Kneib & Nadja Klein, 2022. "Mitigating spatial confounding by explicitly correlating Gaussian random fields," Environmetrics, John Wiley & Sons, Ltd., vol. 33(5), August.
    16. Emiko Dupont & Simon N. Wood & Nicole H. Augustin, 2022. "Rejoinder to the discussions of “Spatial+: A novel approach to spatial confounding”," Biometrics, The International Biometric Society, vol. 78(4), pages 1309-1312, December.
    17. Chanmin Kim & Mauricio Tec & Corwin Zigler, 2023. "Bayesian nonparametric adjustment of confounding," Biometrics, The International Biometric Society, vol. 79(4), pages 3252-3265, December.
    18. Corwin M. Zigler & Krista Watts & Robert W. Yeh & Yun Wang & Brent A. Coull & Francesca Dominici, 2013. "Model Feedback in Bayesian Propensity Score Estimation," Biometrics, The International Biometric Society, vol. 69(1), pages 263-273, March.
    19. Joseph Antonelli & Matthew Cefalu & Nathan Palmer & Denis Agniel, 2018. "Doubly robust matching estimators for high dimensional confounding adjustment," Biometrics, The International Biometric Society, vol. 74(4), pages 1171-1179, December.
    20. R. Gutman & D.B. Rubin, 2012. "Analyses that Inform Policy Decisions," Biometrics, The International Biometric Society, vol. 68(3), pages 671-675, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:78:y:2022:i:4:p:1305-1308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.