IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v68y2012i1p307-315.html
   My bibliography  Save this article

A Composite Likelihood Approach to Latent Multivariate Gaussian Modeling of SNP Data with Application to Genetic Association Testing

Author

Listed:
  • Fang Han
  • Wei Pan

Abstract

No abstract is available for this item.

Suggested Citation

  • Fang Han & Wei Pan, 2012. "A Composite Likelihood Approach to Latent Multivariate Gaussian Modeling of SNP Data with Application to Genetic Association Testing," Biometrics, The International Biometric Society, vol. 68(1), pages 307-315, March.
  • Handle: RePEc:bla:biomet:v:68:y:2012:i:1:p:307-315
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2011.01649.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard E. Chandler & Steven Bate, 2007. "Inference for clustered data using the independence loglikelihood," Biometrika, Biometrika Trust, vol. 94(1), pages 167-183.
    2. Jin-Ting Zhang, 2005. "Approximate and Asymptotic Distributions of Chi-Squared-Type Mixtures With Applications," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 273-285, March.
    3. D. R. Cox, 1972. "The Analysis of Multivariate Binary Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 21(2), pages 113-120, June.
    4. D. R. Cox, 2004. "A note on pseudolikelihood constructed from marginal densities," Biometrika, Biometrika Trust, vol. 91(3), pages 729-737, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Zhendong & Ferrari, Davide & Qian, Guoqi, 2017. "Parsimonious and powerful composite likelihood testing for group difference and genotype–phenotype association," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 37-49.
    2. Jianqing Fan & Han Liu & Yang Ning & Hui Zou, 2017. "High dimensional semiparametric latent graphical model for mixed data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 405-421, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Bai & Yuan Zhong & Xin Gao & Wei Xu, 2020. "Multivariate Mixed Response Model with Pairwise Composite-Likelihood Method," Stats, MDPI, vol. 3(3), pages 1-18, July.
    2. Gourieroux, C. & Monfort, A., 2018. "Composite indirect inference with application to corporate risks," Econometrics and Statistics, Elsevier, vol. 7(C), pages 30-45.
    3. Nuo Xi & Michael W. Browne, 2014. "Contributions to the Underlying Bivariate Normal Method for Factor Analyzing Ordinal Data," Journal of Educational and Behavioral Statistics, , vol. 39(6), pages 583-611, December.
    4. Hung‐pin Lai & Subal C. Kumbhakar, 2020. "Estimation of a dynamic stochastic frontier model using likelihood‐based approaches," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(2), pages 217-247, March.
    5. Mevin Hooten & Christopher Wikle & Michael Schwob, 2020. "Statistical Implementations of Agent‐Based Demographic Models," International Statistical Review, International Statistical Institute, vol. 88(2), pages 441-461, August.
    6. Cristiano Varin, 2008. "On composite marginal likelihoods," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(1), pages 1-28, February.
    7. Elsa Vazquez & Jeffrey R. Wilson, 2021. "Partitioned method of valid moment marginal model with Bayes interval estimates for correlated binary data with time-dependent covariates," Computational Statistics, Springer, vol. 36(4), pages 2701-2718, December.
    8. Varin, Cristiano & Host, Gudmund & Skare, Oivind, 2005. "Pairwise likelihood inference in spatial generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1173-1191, June.
    9. Ioulia Papageorgiou, 2016. "Sampling from Correlated Populations: Optimal Strategies and Comparison Study," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 78(1), pages 119-151, May.
    10. Christel Faes & Marc Aerts & Helena Geys & Geert Molenberghs, 2007. "Model Averaging Using Fractional Polynomials to Estimate a Safe Level of Exposure," Risk Analysis, John Wiley & Sons, vol. 27(1), pages 111-123, February.
    11. Bhat, Chandra R., 2011. "The maximum approximate composite marginal likelihood (MACML) estimation of multinomial probit-based unordered response choice models," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 923-939, August.
    12. Christian Gouriéroux & Alain Monfort, 2017. "Composite Indirect Inference with Application," Working Papers 2017-07, Center for Research in Economics and Statistics.
    13. Tatiyana V. Apanasovich & David Ruppert & Joanne R. Lupton & Natasa Popovic & Nancy D. Turner & Robert S. Chapkin & Raymond J. Carroll, 2008. "Aberrant Crypt Foci and Semiparametric Modeling of Correlated Binary Data," Biometrics, The International Biometric Society, vol. 64(2), pages 490-500, June.
    14. Paik, Jane & Ying, Zhiliang, 2012. "A composite likelihood approach for spatially correlated survival data," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 209-216, January.
    15. Huang, Zhendong & Ferrari, Davide & Qian, Guoqi, 2017. "Parsimonious and powerful composite likelihood testing for group difference and genotype–phenotype association," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 37-49.
    16. M.-L. Feddag, 2016. "Pairwise likelihood estimation for the normal ogive model with binary data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(2), pages 223-237, April.
    17. Brown, Timothy T. & Lee, Jadyn & Markarian, Sione, 2024. "The causal impact of shared decision making on pain outcomes: Gender matters," Social Science & Medicine, Elsevier, vol. 355(C).
    18. Koen Bel & Dennis Fok & Richard Paap, 2018. "Parameter estimation in multivariate logit models with many binary choices," Econometric Reviews, Taylor & Francis Journals, vol. 37(5), pages 534-550, May.
    19. Bel, K. & Paap, R., 2014. "A Multivariate Model for Multinomial Choices," Econometric Institute Research Papers EI 2014-26, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    20. Honig, Benson & Samuelsson, Mikael, 2021. "Business planning by intrapreneurs and entrepreneurs under environmental uncertainty and institutional pressure," Technovation, Elsevier, vol. 99(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:68:y:2012:i:1:p:307-315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.