IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v67y2011i3p1171-1175.html
   My bibliography  Save this article

Joint Regression Analysis for Discrete Longitudinal Data

Author

Listed:
  • L. Madsen
  • Y. Fang

Abstract

No abstract is available for this item.

Suggested Citation

  • L. Madsen & Y. Fang, 2011. "Joint Regression Analysis for Discrete Longitudinal Data," Biometrics, The International Biometric Society, vol. 67(3), pages 1171-1175, September.
  • Handle: RePEc:bla:biomet:v:67:y:2011:i:3:p:1171-1175
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2010.01494.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Denuit, Michel & Lambert, Philippe, 2005. "Constraints on concordance measures in bivariate discrete data," Journal of Multivariate Analysis, Elsevier, vol. 93(1), pages 40-57, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Peng & Valdez, Emiliano A., 2014. "Multivariate negative binomial models for insurance claim counts," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 18-29.
    2. Lu Yang & Claudia Czado, 2022. "Two‐part D‐vine copula models for longitudinal insurance claim data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1534-1561, December.
    3. Roy T. Sabo & N. Rao Chaganty, 2011. "Letter to the Editor of Biometrics on “Joint Regression Analysis for Discrete Longitudinal Data” by Madsen and Fang," Biometrics, The International Biometric Society, vol. 67(4), pages 1669-1670, December.
    4. Hughes, John, 2021. "On the occasional exactness of the distributional transform approximation for direct Gaussian copula models with discrete margins," Statistics & Probability Letters, Elsevier, vol. 177(C).
    5. George Karabatsos, 2024. "Copula Approximate Bayesian Computation Using Distribution Random Forests," Stats, MDPI, vol. 7(3), pages 1-49, September.
    6. Jong-Min Kim & Hyunsu Ju & Yoonsung Jung, 2020. "Copula Approach for Developing a Biomarker Panel for Prediction of Dengue Hemorrhagic Fever," Annals of Data Science, Springer, vol. 7(4), pages 697-712, December.
    7. L. L. Henn, 2022. "Limitations and performance of three approaches to Bayesian inference for Gaussian copula regression models of discrete data," Computational Statistics, Springer, vol. 37(2), pages 909-946, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Faugeras, Olivier P., 2015. "Maximal coupling of empirical copulas for discrete vectors," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 179-186.
    2. Emanuela Raffinetti & Fabio Aimar, 2019. "MDCgo takes up the association/correlation challenge for grouped ordinal data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(4), pages 527-561, December.
    3. Katarzyna Bien & Ingmar Nolte & Winfried Pohlmeier, 2008. "A multivariate integer count hurdle model: theory and application to exchange rate dynamics," Studies in Empirical Economics, in: Luc Bauwens & Winfried Pohlmeier & David Veredas (ed.), High Frequency Financial Econometrics, pages 31-48, Springer.
    4. Quinn C, 2009. "Measuring income-related inequalities in health using a parametric dependence function," Health, Econometrics and Data Group (HEDG) Working Papers 09/24, HEDG, c/o Department of Economics, University of York.
    5. Aristidis Nikoloulopoulos & Dimitris Karlis, 2010. "Regression in a copula model for bivariate count data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(9), pages 1555-1568.
    6. Koen Decancq, 2014. "Copula-based measurement of dependence between dimensions of well-being," Oxford Economic Papers, Oxford University Press, vol. 66(3), pages 681-701.
    7. Geenens Gery, 2020. "Copula modeling for discrete random vectors," Dependence Modeling, De Gruyter, vol. 8(1), pages 417-440, January.
    8. Fokianos, Konstantinos & Fried, Roland & Kharin, Yuriy & Voloshko, Valeriy, 2022. "Statistical analysis of multivariate discrete-valued time series," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    9. Eugenio J. Miravete, 2009. "Competing with Menus of Tariff Options," Journal of the European Economic Association, MIT Press, vol. 7(1), pages 188-205, March.
    10. Juho Kettunen & Lauri Mehtätalo & Eeva‐Stiina Tuittila & Aino Korrensalo & Jarno Vanhatalo, 2024. "Joint species distribution modeling with competition for space," Environmetrics, John Wiley & Sons, Ltd., vol. 35(2), March.
    11. Bien, Katarzyna & Nolte, Ingmar & Pohlmeier, Winfried, 2006. "Estimating liquidity using information on the multivariate trading process," CoFE Discussion Papers 06/04, University of Konstanz, Center of Finance and Econometrics (CoFE).
    12. Emanuela Raffinetti & Pier Alda Ferrari, 2021. "A dependence measure flow tree through Monte Carlo simulations," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(2), pages 467-496, April.
    13. Siem Jan Koopman & Rutger Lit & André Lucas & Anne Opschoor, 2018. "Dynamic discrete copula models for high‐frequency stock price changes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(7), pages 966-985, November.
    14. Fantazzini, Dean, 2020. "Discussing copulas with Sergey Aivazian: a memoir," MPRA Paper 102317, University Library of Munich, Germany.
    15. Wei, Zheng & Kim, Daeyoung, 2021. "On exploratory analytic method for multi-way contingency tables with an ordinal response variable and categorical explanatory variables," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    16. Tzougas, George & Makariou, Despoina, 2022. "The multivariate Poisson-Generalized Inverse Gaussian claim count regression model with varying dispersion and shape parameters," LSE Research Online Documents on Economics 117197, London School of Economics and Political Science, LSE Library.
    17. José Murteira & Óscar Lourenço, 2011. "Health care utilization and self-assessed health: specification of bivariate models using copulas," Empirical Economics, Springer, vol. 41(2), pages 447-472, October.
    18. Chavez-Demoulin, V. & Embrechts, P. & Neslehova, J., 2006. "Quantitative models for operational risk: Extremes, dependence and aggregation," Journal of Banking & Finance, Elsevier, vol. 30(10), pages 2635-2658, October.
    19. Pravin Trivedi & David Zimmer, 2017. "A Note on Identification of Bivariate Copulas for Discrete Count Data," Econometrics, MDPI, vol. 5(1), pages 1-11, February.
    20. Grammig, Joachim & Kehrle, Kerstin, 2008. "A new marked point process model for the federal funds rate target: Methodology and forecast evaluation," Journal of Economic Dynamics and Control, Elsevier, vol. 32(7), pages 2370-2396, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:67:y:2011:i:3:p:1171-1175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.