IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v7y2020i4d10.1007_s40745-020-00293-x.html
   My bibliography  Save this article

Copula Approach for Developing a Biomarker Panel for Prediction of Dengue Hemorrhagic Fever

Author

Listed:
  • Jong-Min Kim

    (University of Minnesota-Morris)

  • Hyunsu Ju

    (U.S. Food and Drug Administration)

  • Yoonsung Jung

    (Prairie View A&M University)

Abstract

The choice of variable-selection methods to identify important variables for binary classification modeling is critical for producing stable statistical models that are interpretable, that generate accurate predictions, and have minimal bias. This work is motivated by the availability of data on clinical and laboratory features of dengue fever infections obtained from 51 individuals enrolled in a prospective observational study of acute human dengue infections. Our paper uses objective Bayesian method to identify important variables for dengue hemorrhagic fever (DHF) over the dengue data set. With the selected important variables by objective Bayesian method, we employ a Gaussian copula marginal regression model considering correlation error structure and a general method of semi-parametric Bayesian inference for Gaussian copula model to estimate, separately, the marginal distribution and dependence structure. We also carry out a receiver operating characteristic (ROC) analysis for the predictive model for DHF and compare our proposed model with the other models of Ju and Brasier (Variable selection methods for developing a biomarker panel for prediction of dengue hemorrhagic fever. BMC Res Notes 6:365, 2013) tested on the basis of the ROC analysis. Our results extend the previous models of DHF by suggesting that IL-10, Days Fever, Sex and Lymphocytes are the major features for predicting DHF on the basis of blood chemistries and cytokine measurements. In addition, the dependence structure of these Days Fever, Lymphocytes, IL-10 and Sex protein profiles associated with disease outcomes was discovered by the semi-parametric Bayesian Gaussian copula model and Gaussian partial correlation method.

Suggested Citation

  • Jong-Min Kim & Hyunsu Ju & Yoonsung Jung, 2020. "Copula Approach for Developing a Biomarker Panel for Prediction of Dengue Hemorrhagic Fever," Annals of Data Science, Springer, vol. 7(4), pages 697-712, December.
  • Handle: RePEc:spr:aodasc:v:7:y:2020:i:4:d:10.1007_s40745-020-00293-x
    DOI: 10.1007/s40745-020-00293-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-020-00293-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-020-00293-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Xue‐Kun Song, 2000. "Multivariate Dispersion Models Generated From Gaussian Copula," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(2), pages 305-320, June.
    2. Genest, Christian & Nešlehová, Johanna, 2007. "A Primer on Copulas for Count Data," ASTIN Bulletin, Cambridge University Press, vol. 37(2), pages 475-515, November.
    3. Denuit, Michel & Lambert, Philippe, 2005. "Constraints on concordance measures in bivariate discrete data," Journal of Multivariate Analysis, Elsevier, vol. 93(1), pages 40-57, March.
    4. Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
    5. Kim, Jong-Min & Jung, Yoon-Sung & Choi, Taeryon & Sungur, Engin A., 2011. "Partial correlation with copula modeling," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1357-1366, March.
    6. Kojadinovic, Ivan & Yan, Jun, 2010. "Modeling Multivariate Distributions with Continuous Margins Using the copula R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 34(i09).
    7. L. Madsen & Y. Fang, 2011. "Joint Regression Analysis for Discrete Longitudinal Data," Biometrics, The International Biometric Society, vol. 67(3), pages 1171-1175, September.
    8. Zubair Ahmad, 2019. "The Hyperbolic Sine Rayleigh Distribution with Application to Bladder Cancer Susceptibility," Annals of Data Science, Springer, vol. 6(2), pages 211-222, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ehab M. Almetwally, 2022. "The Odd Weibull Inverse Topp–Leone Distribution with Applications to COVID-19 Data," Annals of Data Science, Springer, vol. 9(1), pages 121-140, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. L. L. Henn, 2022. "Limitations and performance of three approaches to Bayesian inference for Gaussian copula regression models of discrete data," Computational Statistics, Springer, vol. 37(2), pages 909-946, April.
    2. Smith, Michael Stanley, 2023. "Implicit Copulas: An Overview," Econometrics and Statistics, Elsevier, vol. 28(C), pages 81-104.
    3. Michael Stanley Smith, 2021. "Implicit Copulas: An Overview," Papers 2109.04718, arXiv.org.
    4. George Karabatsos, 2024. "Copula Approximate Bayesian Computation Using Distribution Random Forests," Stats, MDPI, vol. 7(3), pages 1-49, September.
    5. Aristidis Nikoloulopoulos & Dimitris Karlis, 2010. "Regression in a copula model for bivariate count data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(9), pages 1555-1568.
    6. Fokianos, Konstantinos, 2024. "Multivariate Count Time Series Modelling," Econometrics and Statistics, Elsevier, vol. 31(C), pages 100-116.
    7. Shi, Peng & Valdez, Emiliano A., 2014. "Multivariate negative binomial models for insurance claim counts," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 18-29.
    8. Kim, Jong-Min & Kim, Dong H. & Jung, Hojin, 2020. "Modeling non-normal corporate bond yield spreads by copula," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
    9. Craiu, V. Radu & Sabeti, Avideh, 2012. "In mixed company: Bayesian inference for bivariate conditional copula models with discrete and continuous outcomes," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 106-120.
    10. Lu Yang & Claudia Czado, 2022. "Two‐part D‐vine copula models for longitudinal insurance claim data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1534-1561, December.
    11. Geenens Gery, 2020. "Copula modeling for discrete random vectors," Dependence Modeling, De Gruyter, vol. 8(1), pages 417-440, January.
    12. Fokianos, Konstantinos & Fried, Roland & Kharin, Yuriy & Voloshko, Valeriy, 2022. "Statistical analysis of multivariate discrete-valued time series," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    13. Zhang, Shulin & Okhrin, Ostap & Zhou, Qian M. & Song, Peter X.-K., 2016. "Goodness-of-fit test for specification of semiparametric copula dependence models," Journal of Econometrics, Elsevier, vol. 193(1), pages 215-233.
    14. Siem Jan Koopman & Rutger Lit & André Lucas & Anne Opschoor, 2018. "Dynamic discrete copula models for high‐frequency stock price changes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(7), pages 966-985, November.
    15. Fantazzini, Dean, 2020. "Discussing copulas with Sergey Aivazian: a memoir," MPRA Paper 102317, University Library of Munich, Germany.
    16. Tzougas, George & Makariou, Despoina, 2022. "The multivariate Poisson-Generalized Inverse Gaussian claim count regression model with varying dispersion and shape parameters," LSE Research Online Documents on Economics 117197, London School of Economics and Political Science, LSE Library.
    17. Pravin Trivedi & David Zimmer, 2017. "A Note on Identification of Bivariate Copulas for Discrete Count Data," Econometrics, MDPI, vol. 5(1), pages 1-11, February.
    18. Heinen, Andréas & Rengifo, Erick, 2008. "Multivariate reduced rank regression in non-Gaussian contexts, using copulas," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2931-2944, February.
    19. Fredy Pokou & Jules Sadefo Kamdem & François Benhmad, 2024. "Empirical Performance of an ESG Assets Portfolio from US Market," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1569-1638, September.
    20. Edward W. Frees & Gee Lee & Lu Yang, 2016. "Multivariate Frequency-Severity Regression Models in Insurance," Risks, MDPI, vol. 4(1), pages 1-36, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:7:y:2020:i:4:d:10.1007_s40745-020-00293-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.