IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v78y2022i2p701-715.html
   My bibliography  Save this article

Small‐sample inference for cluster‐based outcome‐dependent sampling schemes in resource‐limited settings: Investigating low birthweight in Rwanda

Author

Listed:
  • Sara Sauer
  • Bethany Hedt‐Gauthier
  • Claudia Rivera‐Rodriguez
  • Sebastien Haneuse

Abstract

The neonatal mortality rate in Rwanda remains above the United Nations Sustainable Development Goal 3 target of 12 deaths per 1000 live births. As part of a larger effort to reduce preventable neonatal deaths in the country, we conducted a study to examine risk factors for low birthweight. The data were collected via a cost‐efficient cluster‐based outcome‐dependent sampling (ODS) scheme wherein clusters of individuals (health centers) were selected on the basis of, in part, the outcome rate of the individuals. For a given data set collected via a cluster‐based ODS scheme, estimation for a marginal model may proceed via inverse‐probability‐weighted generalized estimating equations, where the cluster‐specific weights are the inverse probability of the health center's inclusion in the sample. In this paper, we provide a detailed treatment of the asymptotic properties of this estimator, together with an explicit expression for the asymptotic variance and a corresponding estimator. Furthermore, motivated by the study we conducted in Rwanda, we propose a number of small‐sample bias corrections to both the point estimates and the standard error estimates. Through simulation, we show that applying these corrections when the number of clusters is small generally reduces the bias in the point estimates, and results in closer to nominal coverage. The proposed methods are applied to data from 18 health centers and 1 district hospital in Rwanda.

Suggested Citation

  • Sara Sauer & Bethany Hedt‐Gauthier & Claudia Rivera‐Rodriguez & Sebastien Haneuse, 2022. "Small‐sample inference for cluster‐based outcome‐dependent sampling schemes in resource‐limited settings: Investigating low birthweight in Rwanda," Biometrics, The International Biometric Society, vol. 78(2), pages 701-715, June.
  • Handle: RePEc:bla:biomet:v:78:y:2022:i:2:p:701-715
    DOI: 10.1111/biom.13423
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13423
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13423?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. John M. Neuhaus & Alastair J. Scott & Christopher J. Wild & Yannan Jiang & Charles E. McCulloch & Ross Boylan, 2014. "Likelihood-based analysis of longitudinal data from outcome-related sampling designs," Biometrics, The International Biometric Society, vol. 70(1), pages 44-52, March.
    2. Jonathan S. Schildcrout & Shawn P. Garbett & Patrick J. Heagerty, 2013. "Outcome Vector Dependent Sampling with Longitudinal Continuous Response Data: Stratified Sampling Based on Summary Statistics," Biometrics, The International Biometric Society, vol. 69(2), pages 405-416, June.
    3. Lloyd A. Mancl & Timothy A. DeRouen, 2001. "A Covariance Estimator for GEE with Improved Small‐Sample Properties," Biometrics, The International Biometric Society, vol. 57(1), pages 126-134, March.
    4. Patrick J. Heagerty, 1999. "Marginally Specified Logistic-Normal Models for Longitudinal Binary Data," Biometrics, The International Biometric Society, vol. 55(3), pages 688-698, September.
    5. Kauermann G. & Carroll R.J., 2001. "A Note on the Efficiency of Sandwich Covariance Matrix Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1387-1396, December.
    6. J. Neuhaus, 2002. "The analysis of retrospective family studies," Biometrika, Biometrika Trust, vol. 89(1), pages 23-37, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Glen McGee & Jonathan Schildcrout & Sharon‐Lise Normand & Sebastien Haneuse, 2020. "Outcome‐dependent sampling in cluster‐correlated data settings with application to hospital profiling," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 379-402, January.
    2. Glen McGee & Marianthi‐Anna Kioumourtzoglou & Marc G. Weisskopf & Sebastien Haneuse & Brent A. Coull, 2020. "On the interplay between exposure misclassification and informative cluster size," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1209-1226, November.
    3. Yingye Zheng & Patrick J. Heagerty & Li Hsu & Polly A. Newcomb, 2010. "On Combining Family-Based and Population-Based Case–Control Data in Association Studies," Biometrics, The International Biometric Society, vol. 66(4), pages 1024-1033, December.
    4. Westgate, Philip M., 2013. "A bias-corrected covariance estimator for improved inference when using an unstructured correlation with quadratic inference functions," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1553-1558.
    5. Paniagua, Victoria, 2022. "When clients vote for brokers: How elections improve public goods provision in urban slums," World Development, Elsevier, vol. 158(C).
    6. Fan, Chunpeng & Zhang, Donghui, 2014. "Wald-type rank tests: A GEE approach," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 1-16.
    7. Masahiko Gosho & Hisashi Noma & Kazushi Maruo, 2021. "Practical Review and Comparison of Modified Covariance Estimators for Linear Mixed Models in Small‐sample Longitudinal Studies with Missing Data," International Statistical Review, International Statistical Institute, vol. 89(3), pages 550-572, December.
    8. Cheng, Guang & Yu, Zhuqing & Huang, Jianhua Z., 2013. "The cluster bootstrap consistency in generalized estimating equations," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 33-47.
    9. Hammill, Bradley G. & Preisser, John S., 2006. "A SAS/IML software program for GEE and regression diagnostics," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1197-1212, November.
    10. Di Shu & Jessica G. Young & Sengwee Toh & Rui Wang, 2021. "Variance estimation in inverse probability weighted Cox models," Biometrics, The International Biometric Society, vol. 77(3), pages 1101-1117, September.
    11. Steven Teerenstra & Bing Lu & John S. Preisser & Theo van Achterberg & George F. Borm, 2010. "Sample Size Considerations for GEE Analyses of Three-Level Cluster Randomized Trials," Biometrics, The International Biometric Society, vol. 66(4), pages 1230-1237, December.
    12. Jonathan S. Schildcrout & Paul J. Rathouz, 2010. "Longitudinal Studies of Binary Response Data Following Case–Control and Stratified Case–Control Sampling: Design and Analysis," Biometrics, The International Biometric Society, vol. 66(2), pages 365-373, June.
    13. Dateng Li & Jing Cao & Song Zhang, 2020. "Power analysis for cluster randomized trials with multiple binary co‐primary endpoints," Biometrics, The International Biometric Society, vol. 76(4), pages 1064-1074, December.
    14. John M. Neuhaus & Alastair J. Scott & Christopher J. Wild & Yannan Jiang & Charles E. McCulloch & Ross Boylan, 2014. "Likelihood-based analysis of longitudinal data from outcome-related sampling designs," Biometrics, The International Biometric Society, vol. 70(1), pages 44-52, March.
    15. Iddi Samuel & Nwoko Esther O., 2017. "Effect of covariate misspecifications in the marginalized zero-inflated Poisson model," Monte Carlo Methods and Applications, De Gruyter, vol. 23(2), pages 111-120, June.
    16. Francesco BARTOLUCCI & Silvia BACCI & Claudia PIGINI, 2015. "A Misspecification Test for Finite-Mixture Logistic Models for Clustered Binary and Ordered Responses," Working Papers 410, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    17. J. E. Mills & C. A. Field & D. J. Dupuis, 2002. "Marginally Specified Generalized Linear Mixed Models: A Robust Approach," Biometrics, The International Biometric Society, vol. 58(4), pages 727-734, December.
    18. Lam, Clifford & Fan, Jianqing, 2008. "Profile-kernel likelihood inference with diverging number of parameters," LSE Research Online Documents on Economics 31548, London School of Economics and Political Science, LSE Library.
    19. Jason Roy & Michael J. Daniels, 2008. "A General Class of Pattern Mixture Models for Nonignorable Dropout with Many Possible Dropout Times," Biometrics, The International Biometric Society, vol. 64(2), pages 538-545, June.
    20. Kenneth J. Wilkins & Garrett M. Fitzmaurice, 2006. "A Hybrid Model for Nonignorable Dropout in Longitudinal Binary Responses," Biometrics, The International Biometric Society, vol. 62(1), pages 168-176, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:78:y:2022:i:2:p:701-715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.