IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v167y2022ics0167947321001821.html
   My bibliography  Save this article

Dimension reduction for block-missing data based on sparse sliced inverse regression

Author

Listed:
  • Xiao, Zhen
  • Zhang, Qi

Abstract

Due to the high demand of data compression in the big data era, efficient dimension reduction has become a hot statistical research topic recently. One particular challenge for dimension reduction is the block-missing problem, which is prevalent in multi-modality data. Sliced inverse regression as a classical method would not handle the data-missing issue generally. In this paper, we propose the convex sparse sliced inverse regression with elastic net, whose estimation of the central subspace and variable selection are performed simultaneously. This method can be directly applied to block-missing data without imputation. The algorithm called Adjusted Linearized Alternating Direction of Method of Multipliers (Adjusted L-ADMM) is addressed correspondingly. The asymptotic properties are investigated. Numerical results show that our method can effectively and robustly identify important covariates in the high-dimensional case.

Suggested Citation

  • Xiao, Zhen & Zhang, Qi, 2022. "Dimension reduction for block-missing data based on sparse sliced inverse regression," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
  • Handle: RePEc:eee:csdana:v:167:y:2022:i:c:s0167947321001821
    DOI: 10.1016/j.csda.2021.107348
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947321001821
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2021.107348?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. Kean Ming Tan & Zhaoran Wang & Tong Zhang & Han Liu & R Dennis Cook, 2018. "A convex formulation for high-dimensional sparse sliced inverse regression," Biometrika, Biometrika Trust, vol. 105(4), pages 769-782.
    3. Qian Lin & Zhigen Zhao & Jun S. Liu, 2019. "Sparse Sliced Inverse Regression via Lasso," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(528), pages 1726-1739, October.
    4. Guan Yu & Quefeng Li & Dinggang Shen & Yufeng Liu, 2020. "Optimal Sparse Linear Prediction for Block-missing Multi-modality Data Without Imputation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(531), pages 1406-1419, July.
    5. Tianxi Cai & T. Tony Cai & Anru Zhang, 2016. "Structured Matrix Completion with Applications to Genomic Data Integration," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 621-633, April.
    6. Zhou Yu & Liping Zhu & Heng Peng & Lixing Zhu, 2013. "Dimension reduction and predictor selection in semiparametric models," Biometrika, Biometrika Trust, vol. 100(3), pages 641-654.
    7. Xiangrong Yin & Haileab Hilafu, 2015. "Sequential sufficient dimension reduction for large p, small n problems," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(4), pages 879-892, September.
    8. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    9. Zhu, Lixing & Miao, Baiqi & Peng, Heng, 2006. "On Sliced Inverse Regression With High-Dimensional Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 630-643, June.
    10. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    11. Lexin Li & Xiangrong Yin, 2008. "Sliced Inverse Regression with Regularizations," Biometrics, The International Biometric Society, vol. 64(1), pages 124-131, March.
    12. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    13. Yanyuan Ma & Liping Zhu, 2013. "A Review on Dimension Reduction," International Statistical Review, International Statistical Institute, vol. 81(1), pages 134-150, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weng, Jiaying, 2022. "Fourier transform sparse inverse regression estimators for sufficient variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    2. Fang, Fang & Yu, Zhou, 2020. "Model averaging assisted sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    3. Tan, Xin Lu, 2019. "Optimal estimation of slope vector in high-dimensional linear transformation models," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 179-204.
    4. Hojin Yang & Hongtu Zhu & Joseph G. Ibrahim, 2018. "MILFM: Multiple index latent factor model based on high‐dimensional features," Biometrics, The International Biometric Society, vol. 74(3), pages 834-844, September.
    5. Yang Liu & Francesca Chiaromonte & Bing Li, 2017. "Structured Ordinary Least Squares: A Sufficient Dimension Reduction approach for regressions with partitioned predictors and heterogeneous units," Biometrics, The International Biometric Society, vol. 73(2), pages 529-539, June.
    6. Christis Katsouris, 2023. "High Dimensional Time Series Regression Models: Applications to Statistical Learning Methods," Papers 2308.16192, arXiv.org.
    7. Yen, Yu-Min & Yen, Tso-Jung, 2014. "Solving norm constrained portfolio optimization via coordinate-wise descent algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 737-759.
    8. Emmanuel Jordy Menvouta & Sven Serneels & Tim Verdonck, 2022. "Sparse dimension reduction based on energy and ball statistics," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(4), pages 951-975, December.
    9. Margherita Giuzio & Sandra Paterlini, 2019. "Un-diversifying during crises: Is it a good idea?," Computational Management Science, Springer, vol. 16(3), pages 401-432, July.
    10. Li, Jiahan & Chen, Weiye, 2014. "Forecasting macroeconomic time series: LASSO-based approaches and their forecast combinations with dynamic factor models," International Journal of Forecasting, Elsevier, vol. 30(4), pages 996-1015.
    11. Wei Sun & Lexin Li, 2012. "Multiple Loci Mapping via Model-free Variable Selection," Biometrics, The International Biometric Society, vol. 68(1), pages 12-22, March.
    12. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    13. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    14. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    15. Qianyun Li & Runmin Shi & Faming Liang, 2019. "Drug sensitivity prediction with high-dimensional mixture regression," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-18, February.
    16. Soave, David & Lawless, Jerald F., 2023. "Regularized regression for two phase failure time studies," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    17. Zemin Zheng & Jie Zhang & Yang Li, 2022. "L 0 -Regularized Learning for High-Dimensional Additive Hazards Regression," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2762-2775, September.
    18. Umberto Amato & Anestis Antoniadis & Italia De Feis & Irene Gijbels, 2021. "Penalised robust estimators for sparse and high-dimensional linear models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 1-48, March.
    19. Zichen Zhang & Ye Eun Bae & Jonathan R. Bradley & Lang Wu & Chong Wu, 2022. "SUMMIT: An integrative approach for better transcriptomic data imputation improves causal gene identification," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    20. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:167:y:2022:i:c:s0167947321001821. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.