IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v63y2007i4p1031-1037.html
   My bibliography  Save this article

Determining the Number of Clusters Using the Weighted Gap Statistic

Author

Listed:
  • Mingjin Yan
  • Keying Ye

Abstract

No abstract is available for this item.

Suggested Citation

  • Mingjin Yan & Keying Ye, 2007. "Determining the Number of Clusters Using the Weighted Gap Statistic," Biometrics, The International Biometric Society, vol. 63(4), pages 1031-1037, December.
  • Handle: RePEc:bla:biomet:v:63:y:2007:i:4:p:1031-1037
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2007.00784.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sugar, Catherine A. & James, Gareth M., 2003. "Finding the Number of Clusters in a Dataset: An Information-Theoretic Approach," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 750-763, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vidoli, Francesco & Pignataro, Giacomo & Benedetti, Roberto, 2022. "Identification of spatial regimes of the production function of Italian hospitals through spatially constrained cluster-wise regression," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    2. Véronique Cariou & Stéphane Verdun & Emmanuelle Diaz & El Qannari & Evelyne Vigneau, 2009. "Comparison of three hypothesis testing approaches for the selection of the appropriate number of clusters of variables," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 3(3), pages 227-241, December.
    3. Balkissoon, Sarah & Fox, Neil & Lupo, Anthony & Haupt, Sue Ellen & Penny, Stephen G., 2023. "Classification of tall tower meteorological variables and forecasting wind speeds in Columbia, Missouri," Renewable Energy, Elsevier, vol. 217(C).
    4. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    5. Advait Sarkar & Neal Lathia & Cecilia Mascolo, 2015. "Comparing cities’ cycling patterns using online shared bicycle maps," Transportation, Springer, vol. 42(4), pages 541-559, July.
    6. Deb, Soudeep & Karmakar, Sayar, 2023. "A novel spatio-temporal clustering algorithm with applications on COVID-19 data from the United States," Computational Statistics & Data Analysis, Elsevier, vol. 188(C).
    7. Nilsen Gro & Borgan Ørnulf & LiestØl Knut & Lingjærde Ole Christian, 2013. "Identifying clusters in genomics data by recursive partitioning," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(5), pages 637-652, October.
    8. Z. Aytan Ediz & M. Atilla Öner & Y. Can Erdem & Nesimi Kaplan, 2018. "A Model for Make-or-Buy Decisions in Engineering Design Services Sector: A Case Study from Turkey," International Journal of Innovation and Technology Management (IJITM), World Scientific Publishing Co. Pte. Ltd., vol. 15(04), pages 1-27, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Volkovich, Vladimir & Kogan, Jacob & Nicholas, Charles, 2007. "Building initial partitions through sampling techniques," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1097-1105, December.
    2. Anis Hoayek & Didier Rullière, 2024. "Assessing clustering methods using Shannon's entropy," Post-Print hal-03812055, HAL.
    3. Osbert C Zalay, 2020. "Blind method for discovering number of clusters in multidimensional datasets by regression on linkage hierarchies generated from random data," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-28, January.
    4. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    5. Yujia Li & Xiangrui Zeng & Chien‐Wei Lin & George C. Tseng, 2022. "Simultaneous estimation of cluster number and feature sparsity in high‐dimensional cluster analysis," Biometrics, The International Biometric Society, vol. 78(2), pages 574-585, June.
    6. Koltcov, Sergei, 2018. "Application of Rényi and Tsallis entropies to topic modeling optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1192-1204.
    7. Israel A. Almodóvar-Rivera & Rosa V. Rosario-Rosado & Cruz M. Nazario & Johan Hernández-Santiago & Farah A. Ramírez-Marrero & Maxime Nunez & Rohan Maharaj & Peter Adams & Josefa L. Martinez-Brockman &, 2022. "Development of the Anthropometric Grouping Index for the Eastern Caribbean Population Using the Eastern Caribbean Health Outcomes Research Network (ECHORN) Cohort Study Data," IJERPH, MDPI, vol. 19(16), pages 1-9, August.
    8. Qiang Ji & Dayong Zhang & Yuqian Zhao, 2022. "Intra-day co-movements of crude oil futures: China and the international benchmarks," Annals of Operations Research, Springer, vol. 313(1), pages 77-103, June.
    9. Ertl, Antal & Horn, Dániel & Kiss, Hubert János, 2024. "Economic Preferences across Generations and Family Clusters: A Comment," I4R Discussion Paper Series 105, The Institute for Replication (I4R).
    10. Vainora, J., 2024. "Latent Position-Based Modeling of Parameter Heterogeneity," Cambridge Working Papers in Economics 2455, Faculty of Economics, University of Cambridge.
    11. Heilmann, Christoph & Wozabal, David, 2021. "How much smart charging is smart?," Applied Energy, Elsevier, vol. 291(C).
    12. Marianna Mauro & Monica Giancotti & Giovanna Talarico, 2017. "Mapping the field: A bibliometric analysis of accountability literature in healthcare," MECOSAN, FrancoAngeli Editore, vol. 2017(101), pages 7-30.
    13. Jane L. Harvill & Priya Kohli & Nalini Ravishanker, 2017. "Clustering Nonlinear, Nonstationary Time Series Using BSLEX," Methodology and Computing in Applied Probability, Springer, vol. 19(3), pages 935-955, September.
    14. Kondo, Yumi & Salibian-Barrera, Matias & Zamar, Ruben, 2016. "RSKC: An R Package for a Robust and Sparse K-Means Clustering Algorithm," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 72(i05).
    15. Tomislava Pavić Kramarić & Mirjana Pejić Bach & Ksenija Dumičić & Berislav Žmuk & Maja Mihelja Žaja, 2018. "Exploratory study of insurance companies in selected post-transition countries: non-hierarchical cluster analysis," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 783-807, September.
    16. Z. Volkovich & D. Toledano-Kitai & G.-W. Weber, 2013. "Self-learning K-means clustering: a global optimization approach," Journal of Global Optimization, Springer, vol. 56(2), pages 219-232, June.
    17. Zhou, Jian-Lan & Yu, Ze-Tai & Xiao, Ren-Bin, 2022. "A large-scale group Success Likelihood Index Method to estimate human error probabilities in the railway driving process," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    18. Mi-Kyeong Kim & Sangpil Kim & Hong-Gyoo Sohn, 2018. "Relationship between Spatio-Temporal Travel Patterns Derived from Smart-Card Data and Local Environmental Characteristics of Seoul, Korea," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    19. Jaković Božidar & Ćurlin Tamara & Miloloža Ivan, 2021. "Enterprise Digital Divide: Website e-Commerce Functionalities among European Union Enterprises," Business Systems Research, Sciendo, vol. 12(1), pages 197-215, May.
    20. J. Fernando Vera & Rodrigo Macías, 2017. "Variance-Based Cluster Selection Criteria in a K-Means Framework for One-Mode Dissimilarity Data," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 275-294, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:63:y:2007:i:4:p:1031-1037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.