IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v217y2023ics0960148123010376.html
   My bibliography  Save this article

Classification of tall tower meteorological variables and forecasting wind speeds in Columbia, Missouri

Author

Listed:
  • Balkissoon, Sarah
  • Fox, Neil
  • Lupo, Anthony
  • Haupt, Sue Ellen
  • Penny, Stephen G.

Abstract

The wind speeds given in 10 min intervals is forecast using multiple methods inclusive of persistence, statistical methods of ARIMA as well as artificial intelligence methods of Artificial Neural Networks. Tall tower meteorological variables in Columbia, Missouri are clustered using Self-Organizing Maps after the optimal number of clusters was determined using the Elbow and Silhouette methods among others. The optimal number of clusters, k was given as 4 for all methods. The data were then grouped into three Intervals which consisted of approximately 50 percent and over of vectors or rows from the data frame. These intervals were then used as training and testing for the forecast models of Long Short-Term Memory Networks with pressure and wind speeds as inputs as well as lagged wind speeds as inputs. Other models using these intervals in our analyses include Moving Autoregressive Integrated Moving Average (ARIMA) and persistence. From the results obtained from the ARIMA, the metric of the root mean square error (RMSE) ranged from approximately 0.6 to 1.0 ms−1 for forecast horizon 2 to 12 in increments of 2. Interval2 had the upper and lower values and thus showed most variability in errors because it encompassed most of spring, all of summer and the beginning of fall. The moving ARIMA showed lower errors than the LSTM with pressure and wind speeds inputs for all the intervals. This may be attributed to the difficulty in representing the system’s non-linearity and high dimensionality by using just the wind speeds and pressure as inputs. The lagged co-ordinates of the wind speed was then examined and used as inputs for the LSTM. The metric used for the evaluation of prediction of the forecast horizons of 60, 120, 180, 240, 300 and 360 min or 1, 2, 3, 4, 5 and 6 h ahead is the Normalized Root Mean Square Error (NRMSE). These models were compared to the benchmark model of persistence. It was determined that all of the models beat persistence and the LSTM with the lag series outperforms the LSTM with pressure and wind speed as inputs. The Moving ARIMA is now beaten by the lagged series LSTM in all intervals for at least 2 time forecast horizons of 60 and 120 min or 1 and 2 h. It is thus shown that the Artificial Neural Network method with the lagged series inputs is the best performing model.

Suggested Citation

  • Balkissoon, Sarah & Fox, Neil & Lupo, Anthony & Haupt, Sue Ellen & Penny, Stephen G., 2023. "Classification of tall tower meteorological variables and forecasting wind speeds in Columbia, Missouri," Renewable Energy, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123010376
    DOI: 10.1016/j.renene.2023.119123
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123010376
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119123?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cadenas, Erasmo & Rivera, Wilfrido, 2009. "Short term wind speed forecasting in La Venta, Oaxaca, México, using artificial neural networks," Renewable Energy, Elsevier, vol. 34(1), pages 274-278.
    2. Cao, Qing & Ewing, Bradley T. & Thompson, Mark A., 2012. "Forecasting wind speed with recurrent neural networks," European Journal of Operational Research, Elsevier, vol. 221(1), pages 148-154.
    3. Hu, Rui & Hu, Weihao & Gökmen, Nuri & Li, Pengfei & Huang, Qi & Chen, Zhe, 2019. "High resolution wind speed forecasting based on wavelet decomposed phase space reconstruction and self-organizing map," Renewable Energy, Elsevier, vol. 140(C), pages 17-31.
    4. Fox, Neil I., 2011. "A tall tower study of Missouri winds," Renewable Energy, Elsevier, vol. 36(1), pages 330-337.
    5. Wehrens, Ron & Buydens, Lutgarde M. C., 2007. "Self- and Super-organizing Maps in R: The kohonen Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 21(i05).
    6. Vikram Bali & Ajay Kumar & Satyam Gangwar, 2020. "A Novel Approach for Wind Speed Forecasting Using LSTM-ARIMA Deep Learning Models," International Journal of Agricultural and Environmental Information Systems (IJAEIS), IGI Global, vol. 11(3), pages 13-30, July.
    7. Meftah Elsaraiti & Adel Merabet, 2021. "A Comparative Analysis of the ARIMA and LSTM Predictive Models and Their Effectiveness for Predicting Wind Speed," Energies, MDPI, vol. 14(20), pages 1-16, October.
    8. Balkissoon, Sarah & Fox, Neil & Lupo, Anthony & Haupt, Sue Ellen & Charles Li, Y. & Market, Patrick & Walsh, Samuel, 2021. "Determining chaotic characteristics and forecasting tall tower wind speeds in Missouri using empirical dynamical modeling (EDM)," Renewable Energy, Elsevier, vol. 170(C), pages 1292-1307.
    9. Balkissoon, Sarah & Fox, Neil & Lupo, Anthony, 2020. "Fractal characteristics of tall tower wind speeds in Missouri," Renewable Energy, Elsevier, vol. 154(C), pages 1346-1356.
    10. Ramasamy, P. & Chandel, S.S. & Yadav, Amit Kumar, 2015. "Wind speed prediction in the mountainous region of India using an artificial neural network model," Renewable Energy, Elsevier, vol. 80(C), pages 338-347.
    11. Mingjin Yan & Keying Ye, 2007. "Determining the Number of Clusters Using the Weighted Gap Statistic," Biometrics, The International Biometric Society, vol. 63(4), pages 1031-1037, December.
    12. Sfetsos, A., 2000. "A comparison of various forecasting techniques applied to mean hourly wind speed time series," Renewable Energy, Elsevier, vol. 21(1), pages 23-35.
    13. Li, Gong & Shi, Jing, 2010. "On comparing three artificial neural networks for wind speed forecasting," Applied Energy, Elsevier, vol. 87(7), pages 2313-2320, July.
    14. Carolin Mabel, M. & Fernandez, E., 2008. "Analysis of wind power generation and prediction using ANN: A case study," Renewable Energy, Elsevier, vol. 33(5), pages 986-992.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
    2. Rana Muhammad Adnan & Zhongmin Liang & Xiaohui Yuan & Ozgur Kisi & Muhammad Akhlaq & Binquan Li, 2019. "Comparison of LSSVR, M5RT, NF-GP, and NF-SC Models for Predictions of Hourly Wind Speed and Wind Power Based on Cross-Validation," Energies, MDPI, vol. 12(2), pages 1-22, January.
    3. Koo, Junmo & Han, Gwon Deok & Choi, Hyung Jong & Shim, Joon Hyung, 2015. "Wind-speed prediction and analysis based on geological and distance variables using an artificial neural network: A case study in South Korea," Energy, Elsevier, vol. 93(P2), pages 1296-1302.
    4. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    5. Jiani Heng & Chen Wang & Xuejing Zhao & Liye Xiao, 2016. "Research and Application Based on Adaptive Boosting Strategy and Modified CGFPA Algorithm: A Case Study for Wind Speed Forecasting," Sustainability, MDPI, vol. 8(3), pages 1-25, March.
    6. He, Qingqing & Wang, Jianzhou & Lu, Haiyan, 2018. "A hybrid system for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 226(C), pages 756-771.
    7. Yu, Jie & Chen, Kuilin & Mori, Junichi & Rashid, Mudassir M., 2013. "A Gaussian mixture copula model based localized Gaussian process regression approach for long-term wind speed prediction," Energy, Elsevier, vol. 61(C), pages 673-686.
    8. Zhao, Pan & Wang, Jiangfeng & Xia, Junrong & Dai, Yiping & Sheng, Yingxin & Yue, Jie, 2012. "Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China," Renewable Energy, Elsevier, vol. 43(C), pages 234-241.
    9. Jung, Sungmoon & Kwon, Soon-Duck, 2013. "Weighted error functions in artificial neural networks for improved wind energy potential estimation," Applied Energy, Elsevier, vol. 111(C), pages 778-790.
    10. Sewdien, V.N. & Preece, R. & Torres, J.L. Rueda & Rakhshani, E. & van der Meijden, M., 2020. "Assessment of critical parameters for artificial neural networks based short-term wind generation forecasting," Renewable Energy, Elsevier, vol. 161(C), pages 878-892.
    11. Tascikaraoglu, A. & Uzunoglu, M., 2014. "A review of combined approaches for prediction of short-term wind speed and power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 243-254.
    12. Emeksiz, Cem & Tan, Mustafa, 2022. "Multi-step wind speed forecasting and Hurst analysis using novel hybrid secondary decomposition approach," Energy, Elsevier, vol. 238(PA).
    13. Liu, Hui & Tian, Hong-qi & Li, Yan-fei, 2012. "Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction," Applied Energy, Elsevier, vol. 98(C), pages 415-424.
    14. Ramasamy, P. & Chandel, S.S. & Yadav, Amit Kumar, 2015. "Wind speed prediction in the mountainous region of India using an artificial neural network model," Renewable Energy, Elsevier, vol. 80(C), pages 338-347.
    15. Wang, Jianzhou & Xiong, Shenghua, 2014. "A hybrid forecasting model based on outlier detection and fuzzy time series – A case study on Hainan wind farm of China," Energy, Elsevier, vol. 76(C), pages 526-541.
    16. Hu, Jianming & Wang, Jianzhou & Zeng, Guowei, 2013. "A hybrid forecasting approach applied to wind speed time series," Renewable Energy, Elsevier, vol. 60(C), pages 185-194.
    17. Ait Maatallah, Othman & Achuthan, Ajit & Janoyan, Kerop & Marzocca, Pier, 2015. "Recursive wind speed forecasting based on Hammerstein Auto-Regressive model," Applied Energy, Elsevier, vol. 145(C), pages 191-197.
    18. Ziel, Florian & Croonenbroeck, Carsten & Ambach, Daniel, 2016. "Forecasting wind power – Modeling periodic and non-linear effects under conditional heteroscedasticity," Applied Energy, Elsevier, vol. 177(C), pages 285-297.
    19. Liu, Da & Niu, Dongxiao & Wang, Hui & Fan, Leilei, 2014. "Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm," Renewable Energy, Elsevier, vol. 62(C), pages 592-597.
    20. Liu, Hui & Chen, Chao & Tian, Hong-qi & Li, Yan-fei, 2012. "A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks," Renewable Energy, Elsevier, vol. 48(C), pages 545-556.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123010376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.