IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v76y2022i3p309-330.html
   My bibliography  Save this article

Rank correlation inferences for clustered data with small sample size

Author

Listed:
  • Sally Hunsberger
  • Lori Long
  • Sarah E. Reese
  • Gloria H. Hong
  • Ian A. Myles
  • Christa S. Zerbe
  • Pleonchan Chetchotisakd
  • Joanna H. Shih

Abstract

This paper develops methods to test for associations between two variables with clustered data using a U‐Statistic approach with a second‐order approximation to the variance of the parameter estimate for the test statistic. The tests that are presented are for clustered versions of: Pearsons χ2 test, the Spearman rank correlation and Kendall's τ for continuous data or ordinal data and for alternative measures of Kendall's τ that allow for ties in the data. Shih and Fay use the U‐Statistic approach but only consider a first‐order approximation. The first‐order approximation has inflated significance level in scenarios with small sample sizes. We derive the test statistics using the second‐order approximations aiming to improve the type I error rates. The method applies to data where clusters have the same number of measurements for each variable or where one of the variables may be measured once per cluster while the other variable may be measured multiple times. We evaluate the performance of the test statistics through simulation with small sample sizes. The methods are all available in the R package cluscor.

Suggested Citation

  • Sally Hunsberger & Lori Long & Sarah E. Reese & Gloria H. Hong & Ian A. Myles & Christa S. Zerbe & Pleonchan Chetchotisakd & Joanna H. Shih, 2022. "Rank correlation inferences for clustered data with small sample size," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(3), pages 309-330, August.
  • Handle: RePEc:bla:stanee:v:76:y:2022:i:3:p:309-330
    DOI: 10.1111/stan.12261
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/stan.12261
    Download Restriction: no

    File URL: https://libkey.io/10.1111/stan.12261?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Romdhani, H. & Lakhal-Chaieb, L. & Rivest, L.-P., 2014. "Kendall’s tau for hierarchical data," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 210-225.
    2. John M. Williamson & Somnath Datta & Glen A. Satten, 2003. "Marginal Analyses of Clustered Data When Cluster Size Is Informative," Biometrics, The International Biometric Society, vol. 59(1), pages 36-42, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaakko Nevalainen & Somnath Datta & Hannu Oja, 2014. "Inference on the marginal distribution of clustered data with informative cluster size," Statistical Papers, Springer, vol. 55(1), pages 71-92, February.
    2. Ying Huang & Brian Leroux, 2011. "Informative Cluster Sizes for Subcluster-Level Covariates and Weighted Generalized Estimating Equations," Biometrics, The International Biometric Society, vol. 67(3), pages 843-851, September.
    3. Somnath Datta & Glen A. Satten, 2008. "A Signed-Rank Test for Clustered Data," Biometrics, The International Biometric Society, vol. 64(2), pages 501-507, June.
    4. You-Gan Wang & Yudong Zhao, 2008. "Weighted Rank Regression for Clustered Data Analysis," Biometrics, The International Biometric Society, vol. 64(1), pages 39-45, March.
    5. Chun Yin Lee & Kin Yau Wong & Kwok Fai Lam & Dipankar Bandyopadhyay, 2023. "A semiparametric joint model for cluster size and subunit‐specific interval‐censored outcomes," Biometrics, The International Biometric Society, vol. 79(3), pages 2010-2022, September.
    6. Jaakko Nevalainen & Denis Larocque & Hannu Oja, 2007. "A weighted spatial median for clustered data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 355-379, February.
    7. Fan, Jie & Datta, Somnath, 2011. "Fitting marginal accelerated failure time models to clustered survival data with potentially informative cluster size," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3295-3303, December.
    8. Paul S. Albert, 2005. "Letter to the Editor," Biometrics, The International Biometric Society, vol. 61(3), pages 879-880, September.
    9. Charles E. McCulloch & John M. Neuhaus & Rebecca L. Olin, 2016. "Biased and unbiased estimation in longitudinal studies with informative visit processes," Biometrics, The International Biometric Society, vol. 72(4), pages 1315-1324, December.
    10. Liya Fu & You-Gan Wang, 2012. "Efficient Estimation for Rank-Based Regression with Clustered Data," Biometrics, The International Biometric Society, vol. 68(4), pages 1074-1082, December.
    11. Xiuyu J. Cong & Guosheng Yin & Yu Shen, 2007. "Marginal Analysis of Correlated Failure Time Data with Informative Cluster Sizes," Biometrics, The International Biometric Society, vol. 63(3), pages 663-672, September.
    12. Xiaoyun Li & Dipankar Bandyopadhyay & Stuart Lipsitz & Debajyoti Sinha, 2011. "Likelihood Methods for Binary Responses of Present Components in a Cluster," Biometrics, The International Biometric Society, vol. 67(2), pages 629-635, June.
    13. Shaun R. Seaman & Menelaos Pavlou & Andrew J. Copas, 2014. "Methods for observed-cluster inference when cluster size is informative: A review and clarifications," Biometrics, The International Biometric Society, vol. 70(2), pages 449-456, June.
    14. Weichung Joe Shih & Shou-En Lu & Yong Lin, 2005. "Rejoinder to the Letter to the Editor from P. S. Albert," Biometrics, The International Biometric Society, vol. 61(3), pages 880-881, September.
    15. Joanna H. Shih & Michael P. Fay, 2017. "Pearson's chi-square test and rank correlation inferences for clustered data," Biometrics, The International Biometric Society, vol. 73(3), pages 822-834, September.
    16. Ling Lan & Dipankar Bandyopadhyay & Somnath Datta, 2017. "Non-parametric regression in clustered multistate current status data with informative cluster size," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 71(1), pages 31-57, January.
    17. Jaakko Nevalainen & Denis Larocque & Hannu Oja, 2007. "A weighted spatial median for clustered data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 355-379, February.
    18. Seo, Byungtae & Ha, Il Do, 2024. "Semiparametric accelerated failure time models under unspecified random effect distributions," Computational Statistics & Data Analysis, Elsevier, vol. 195(C).
    19. Zhang Xinyan & Sun Jianguo, 2013. "Semiparametric Regression Analysis of Clustered Interval-Censored Failure Time Data with Informative Cluster Size," The International Journal of Biostatistics, De Gruyter, vol. 9(2), pages 205-214, August.
    20. Faes, Christel & Geys, Helena & Aerts, Marc & Molenberghs, Geert, 2006. "A hierarchical modeling approach for risk assessment in developmental toxicity studies," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1848-1861, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:76:y:2022:i:3:p:309-330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.