IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v61y2005i4p1102-1111.html
   My bibliography  Save this article

Counterfactual Links to the Proportion of Treatment Effect Explained by a Surrogate Marker

Author

Listed:
  • Jeremy M. G. Taylor
  • Yue Wang
  • Rodolphe Thiébaut

Abstract

No abstract is available for this item.

Suggested Citation

  • Jeremy M. G. Taylor & Yue Wang & Rodolphe Thiébaut, 2005. "Counterfactual Links to the Proportion of Treatment Effect Explained by a Surrogate Marker," Biometrics, The International Biometric Society, vol. 61(4), pages 1102-1111, December.
  • Handle: RePEc:bla:biomet:v:61:y:2005:i:4:p:1102-1111
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2005.00380.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Constantine E. Frangakis & Donald B. Rubin, 2002. "Principal Stratification in Causal Inference," Biometrics, The International Biometric Society, vol. 58(1), pages 21-29, March.
    2. Yue Wang & Jeremy M. G. Taylor, 2002. "A Measure of the Proportion of Treatment Effect Explained by a Surrogate Marker," Biometrics, The International Biometric Society, vol. 58(4), pages 803-812, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Denis Agniel & Layla Parast, 2021. "Evaluation of longitudinal surrogate markers," Biometrics, The International Biometric Society, vol. 77(2), pages 477-489, June.
    2. Cheng Zheng & Lei Liu, 2022. "Quantifying direct and indirect effect for longitudinal mediator and survival outcome using joint modeling approach," Biometrics, The International Biometric Society, vol. 78(3), pages 1233-1243, September.
    3. Ghosh, Debashis, 2012. "A causal framework for surrogate endpoints with semi-competing risks data," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1898-1902.
    4. Gilbert Peter B. & Gabriel Erin E. & Huang Ying & Chan Ivan S.F., 2015. "Surrogate Endpoint Evaluation: Principal Stratification Criteria and the Prentice Definition," Journal of Causal Inference, De Gruyter, vol. 3(2), pages 157-175, September.
    5. Rui Zhuang & Fan Xia & Yixin Wang & Ying-Qing Chen, 2022. "A Surrogate Measure for Time-Varying Biomarkers in Randomized Clinical Trials," Mathematics, MDPI, vol. 10(4), pages 1-17, February.
    6. Layla Parast & Tianxi Cai & Lu Tian, 2023. "Testing for heterogeneity in the utility of a surrogate marker," Biometrics, The International Biometric Society, vol. 79(2), pages 799-810, June.
    7. Layla Parast & Tanya P. Garcia & Ross L. Prentice & Raymond J. Carroll, 2022. "Robust methods to correct for measurement error when evaluating a surrogate marker," Biometrics, The International Biometric Society, vol. 78(1), pages 9-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gilbert Peter B. & Blette Bryan S. & Hudgens Michael G. & Shepherd Bryan E., 2020. "Post-randomization Biomarker Effect Modification Analysis in an HIV Vaccine Clinical Trial," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 54-69, January.
    2. Debashis Ghosh, 2009. "On Assessing Surrogacy in a Single Trial Setting Using a Semicompeting Risks Paradigm," Biometrics, The International Biometric Society, vol. 65(2), pages 521-529, June.
    3. Gilbert Peter B. & Blette Bryan S. & Shepherd Bryan E. & Hudgens Michael G., 2020. "Post-randomization Biomarker Effect Modification Analysis in an HIV Vaccine Clinical Trial," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 54-69, January.
    4. Rui Zhuang & Ying Qing Chen, 2020. "Measuring Surrogacy in Clinical Research," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 295-323, December.
    5. Layla Parast & Lu Tian & Tianxi Cai, 2020. "Assessing the value of a censored surrogate outcome," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 245-265, April.
    6. Michael R. Elliott & Anna Conlon & Yun Li, 2013. "Discussion on “Surrogate Measures and Consistent Surrogates”," Biometrics, The International Biometric Society, vol. 69(3), pages 565-569, September.
    7. Ying Huang & Shibasish Dasgupta, 2019. "Likelihood-Based Methods for Assessing Principal Surrogate Endpoints in Vaccine Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 504-523, December.
    8. John Engberg & Dennis Epple & Jason Imbrogno & Holger Sieg & Ron Zimmer, 2014. "Evaluating Education Programs That Have Lotteried Admission and Selective Attrition," Journal of Labor Economics, University of Chicago Press, vol. 32(1), pages 27-63.
    9. Rachel Axelrod & Daniel Nevo, 2023. "A sensitivity analysis approach for the causal hazard ratio in randomized and observational studies," Biometrics, The International Biometric Society, vol. 79(3), pages 2743-2756, September.
    10. Dean Follmann, 2006. "Augmented Designs to Assess Immune Response in Vaccine Trials," Biometrics, The International Biometric Society, vol. 62(4), pages 1161-1169, December.
    11. G. Baker Stuart & S. Lindeman Karen, 2013. "Revisiting a Discrepant Result: A Propensity Score Analysis, the Paired Availability Design for Historical Controls, and a Meta-Analysis of Randomized Trials," Journal of Causal Inference, De Gruyter, vol. 1(1), pages 51-82, June.
    12. Bubb, Ryan & Kaufman, Alex, 2014. "Securitization and moral hazard: Evidence from credit score cutoff rules," Journal of Monetary Economics, Elsevier, vol. 63(C), pages 1-18.
    13. Eduardo Fé, 2021. "Pension eligibility rules and the local causal effect of retirement on cognitive functioning," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 812-841, July.
    14. Zhihong Cai & Manabu Kuroki & Judea Pearl & Jin Tian, 2008. "Bounds on Direct Effects in the Presence of Confounded Intermediate Variables," Biometrics, The International Biometric Society, vol. 64(3), pages 695-701, September.
    15. Peter B. Gilbert & Ronald J. Bosch & Michael G. Hudgens, 2003. "Sensitivity Analysis for the Assessment of Causal Vaccine Effects on Viral Load in HIV Vaccine Trials," Biometrics, The International Biometric Society, vol. 59(3), pages 531-541, September.
    16. German Blanco & Carlos A. Flores & Alfonso Flores-Lagunes, 2013. "Bounds on Average and Quantile Treatment Effects of Job Corps Training on Wages," Journal of Human Resources, University of Wisconsin Press, vol. 48(3), pages 659-701.
    17. Michael Rosenblum & Nicholas P. Jewell & Mark van der Laan & Stephen Shiboski & Ariane van der Straten & Nancy Padian, 2009. "Analysing direct effects in randomized trials with secondary interventions: an application to human immunodeficiency virus prevention trials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(2), pages 443-465, April.
    18. Jierui Du & Gao Wen & Xin Liang, 2024. "Estimating the Complier Average Causal Effect with Non-Ignorable Missing Outcomes Using Likelihood Analysis," Mathematics, MDPI, vol. 12(9), pages 1-16, April.
    19. Shuxi Zeng & Fan Li & Peng Ding, 2020. "Is being an only child harmful to psychological health?: Evidence from an instrumental variable analysis of China's One-Child Policy," Papers 2005.09130, arXiv.org, revised Jun 2020.
    20. Choi, Byeong Yeob & Lee, Jae Won, 2019. "The isotonic regression approach for an instrumental variable estimation of the potential outcome distributions for compliers," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 134-144.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:61:y:2005:i:4:p:1102-1111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.