IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v61y2005i2p498-506.html
   My bibliography  Save this article

Imputation and Variable Selection in Linear Regression Models with Missing Covariates

Author

Listed:
  • Xiaowei Yang
  • Thomas R. Belin
  • W. John Boscardin

Abstract

No abstract is available for this item.

Suggested Citation

  • Xiaowei Yang & Thomas R. Belin & W. John Boscardin, 2005. "Imputation and Variable Selection in Linear Regression Models with Missing Covariates," Biometrics, The International Biometric Society, vol. 61(2), pages 498-506, June.
  • Handle: RePEc:bla:biomet:v:61:y:2005:i:2:p:498-506
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2005.00317.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Smith, Michael & Kohn, Robert, 1996. "Nonparametric regression using Bayesian variable selection," Journal of Econometrics, Elsevier, vol. 75(2), pages 317-343, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yunxi Zhang & Soeun Kim, 2024. "Gaussian Graphical Model Estimation and Selection for High-Dimensional Incomplete Data Using Multiple Imputation and Horseshoe Estimators," Mathematics, MDPI, vol. 12(12), pages 1-15, June.
    2. Adriano Zanin Zambom & Gregory J. Matthews, 2021. "Sure independence screening in the presence of missing data," Statistical Papers, Springer, vol. 62(2), pages 817-845, April.
    3. Nitzan Cohen & Yakir Berchenko, 2021. "Normalized Information Criteria and Model Selection in the Presence of Missing Data," Mathematics, MDPI, vol. 9(19), pages 1-23, October.
    4. Consentino, Fabrizio & Claeskens, Gerda, 2010. "Order selection tests with multiply imputed data," Computational Statistics & Data Analysis, Elsevier, vol. 54(10), pages 2284-2295, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guarin, Alexander & Lozano, Ignacio, 2017. "Credit funding and banking fragility: A forecasting model for emerging economies," Emerging Markets Review, Elsevier, vol. 32(C), pages 168-189.
    2. Giordani, Paolo & Jacobson, Tor & Schedvin, Erik von & Villani, Mattias, 2014. "Taking the Twists into Account: Predicting Firm Bankruptcy Risk with Splines of Financial Ratios," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(4), pages 1071-1099, August.
    3. Smith, Michael & Kohn, Robert & Mathur, Sharat K., 2000. "Bayesian Semiparametric Regression: An Exposition and Application to Print Advertising Data," Journal of Business Research, Elsevier, vol. 49(3), pages 229-244, September.
    4. Fernandez, Carmen & Ley, Eduardo & Steel, Mark F. J., 2001. "Benchmark priors for Bayesian model averaging," Journal of Econometrics, Elsevier, vol. 100(2), pages 381-427, February.
    5. Sarah Brown & Pulak Ghosh & Bhuvanesh Pareek & Karl Taylor, 2017. "Financial Hardship and Saving Behaviour: Bayesian Analysis of British Panel Data," Working Papers 2017011, The University of Sheffield, Department of Economics.
    6. Carmen Fernandez & Eduardo Ley & Mark F. J. Steel, 2001. "Model uncertainty in cross-country growth regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(5), pages 563-576.
    7. Lopresti, John, 2016. "Multiproduct firms and product scope adjustment in trade," Journal of International Economics, Elsevier, vol. 100(C), pages 160-173.
    8. Hoeting, Jennifer A. & Ibrahim, Joseph G., 1998. "Bayesian predictive simultaneous variable and transformation selection in the linear model," Computational Statistics & Data Analysis, Elsevier, vol. 28(1), pages 87-103, July.
    9. Bin Jiang & Anastasios Panagiotelis & George Athanasopoulos & Rob Hyndman & Farshid Vahid, 2016. "Bayesian Rank Selection in Multivariate Regression," Monash Econometrics and Business Statistics Working Papers 6/16, Monash University, Department of Econometrics and Business Statistics.
    10. Pena, Daniel & Redondas, Dolores, 2006. "Bayesian curve estimation by model averaging," Computational Statistics & Data Analysis, Elsevier, vol. 50(3), pages 688-709, February.
    11. Powers, Stephanie & Gerlach, Richard & Stamey, James, 2010. "Bayesian variable selection for Poisson regression with underreported responses," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3289-3299, December.
    12. Villani, Mattias & Kohn, Robert & Giordani, Paolo, 2009. "Regression density estimation using smooth adaptive Gaussian mixtures," Journal of Econometrics, Elsevier, vol. 153(2), pages 155-173, December.
    13. Xianhua Dai & Wolfgang Karl Härdle & Keming Yu, 2016. "Do maternal health problems influence child's worrying status? Evidence from the British Cohort Study," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(16), pages 2941-2955, December.
    14. Robert J. B. Goudie & Sach Mukherjee & Jan-Emmanuel De Neve & Andrew J. Oswald & Stephen Wu, 2011. "Happiness as a Driver of Risk-Avoiding Behavior," CESifo Working Paper Series 3451, CESifo.
    15. Ji, Yonggang & Lin, Nan & Zhang, Baoxue, 2012. "Model selection in binary and tobit quantile regression using the Gibbs sampler," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 827-839.
    16. Gilles Celeux & Mohammed El Anbari & Jean-Michel Marin & Christian P. Robert, 2010. "Regularization in Regression : Comparing Bayesian and Frequentist Methods in a Poorly Informative Situation," Working Papers 2010-43, Center for Research in Economics and Statistics.
    17. Dimitris Korobilis, 2008. "Forecasting in vector autoregressions with many predictors," Advances in Econometrics, in: Bayesian Econometrics, pages 403-431, Emerald Group Publishing Limited.
    18. Bruno Scarpa & David B. Dunson, 2014. "Enriched Stick-Breaking Processes for Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 647-660, June.
    19. M. P. Wand, 2000. "A Comparison of Regression Spline Smoothing Procedures," Computational Statistics, Springer, vol. 15(4), pages 443-462, December.
    20. Shively, Thomas S. & Kockelman, Kara & Damien, Paul, 2010. "A Bayesian semi-parametric model to estimate relationships between crash counts and roadway characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 44(5), pages 699-715, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:61:y:2005:i:2:p:498-506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.