IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v27y2000i1p1-20.html
   My bibliography  Save this article

Model Reduction for Prediction in Regression Models

Author

Listed:
  • Inge S. Helland

Abstract

We look at prediction in regression models under squared loss for the random x case with many explanatory variables. Model reduction is done by conditioning upon only a small number of linear combinations of the original variables. The corresponding reduced model will then essentially be the population model for the chemometricians' partial least squares algorithm. Estimation of the selection matrix under this model is briefly discussed, and analoguous results for the case with multivariate response are formulated. Finally, it is shown that an assumption of multinormality may be weakened to assuming elliptically symmetric distribution, and that some of the results are valid without any distributional assumption at all.

Suggested Citation

  • Inge S. Helland, 2000. "Model Reduction for Prediction in Regression Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(1), pages 1-20, March.
  • Handle: RePEc:bla:scjsta:v:27:y:2000:i:1:p:1-20
    DOI: 10.1111/1467-9469.00174
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9469.00174
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9469.00174?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenyang Zhang & Qiwei Yao & Howell Tong & Nils Chr. Stenseth, 2003. "Smoothing for Spatiotemporal Models and Its Application to Modeling Muskrat-Mink Interaction," Biometrics, The International Biometric Society, vol. 59(4), pages 813-821, December.
    2. Hyonho Chun & Sündüz Keleş, 2010. "Sparse partial least squares regression for simultaneous dimension reduction and variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 3-25, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:27:y:2000:i:1:p:1-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.