IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v55y1999i3p699-703.html
   My bibliography  Save this article

Approximate Standard Errors in Semiparametric Models

Author

Listed:
  • Maria Durban
  • Christine A. Hackett
  • I. D. Currie

Abstract

No abstract is available for this item.

Suggested Citation

  • Maria Durban & Christine A. Hackett & I. D. Currie, 1999. "Approximate Standard Errors in Semiparametric Models," Biometrics, The International Biometric Society, vol. 55(3), pages 699-703, September.
  • Handle: RePEc:bla:biomet:v:55:y:1999:i:3:p:699-703
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.0006-341X.1999.00699.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rice, John, 1986. "Convergence rates for partially splined models," Statistics & Probability Letters, Elsevier, vol. 4(4), pages 203-208, June.
    2. Unknown, 1986. "Letters," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 1(4), pages 1-9.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Przystalski, Marcin & Krajewski, Pawel, 2007. "Constrained estimators of treatment parameters in semiparametric models," Statistics & Probability Letters, Elsevier, vol. 77(9), pages 914-919, May.
    2. Häggström, Jenny, 2013. "Bandwidth selection for backfitting estimation of semiparametric additive models: A simulation study," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 136-148.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linton, Oliver, 1995. "Second Order Approximation in the Partially Linear Regression Model," Econometrica, Econometric Society, vol. 63(5), pages 1079-1112, September.
    2. Hardle, Wolfgang & LIang, Hua & Gao, Jiti, 2000. "Partially linear models," MPRA Paper 39562, University Library of Munich, Germany, revised 01 Sep 2000.
    3. Wang Q. & Linton O. & Hardle W., 2004. "Semiparametric Regression Analysis With Missing Response at Random," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 334-345, January.
    4. Golubev, Georgi & Härdle, Wolfgang, 1997. "On adaptive estimation in partial linear models," SFB 373 Discussion Papers 1997,100, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    5. Guang Cheng & Hao Zhang & Zuofeng Shang, 2015. "Sparse and efficient estimation for partial spline models with increasing dimension," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(1), pages 93-127, February.
    6. Yongsong Qin & Jianjun Li, 2011. "Empirical likelihood for partially linear models with missing responses at random," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(2), pages 497-511.
    7. Wang, Qihua & Härdle, Wolfgang & Linton, Oliver, 2002. "Semiparametric regression analysis under imputation for missing response data," SFB 373 Discussion Papers 2002,6, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    8. Atak, Alev & Linton, Oliver & Xiao, Zhijie, 2011. "A semiparametric panel model for unbalanced data with application to climate change in the United Kingdom," Journal of Econometrics, Elsevier, vol. 164(1), pages 92-115, September.
    9. Häggström, Jenny, 2013. "Bandwidth selection for backfitting estimation of semiparametric additive models: A simulation study," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 136-148.
    10. Ai, Chunrong & McFadden, Daniel, 1997. "Estimation of some partially specified nonlinear models," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 1-37.
    11. Sung Wan Han & Rickson C. Mesquita & Theresa M. Busch & Mary E. Putt, 2014. "A method for choosing the smoothing parameter in a semi-parametric model for detecting change-points in blood flow," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(1), pages 26-45, January.
    12. repec:hal:journl:peer-00844810 is not listed on IDEAS
    13. Wang, Xiaoguang & Lu, Dawei & Song, Lixin, 2013. "Statistical inference for partially linear stochastic models with heteroscedastic errors," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 150-160.
    14. Wang Q. & Linton O. & Hardle W., 2004. "Semiparametric Regression Analysis With Missing Response at Random," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 334-345, January.
    15. Germán Aneiros & Alejandro Quintela, 2001. "Asymptotic properties in partial linear models under dependence," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 10(2), pages 333-355, December.
    16. Haotian Chen & Xibin Zhang, 2014. "Bayesian Estimation for Partially Linear Models with an Application to Household Gasoline Consumption," Monash Econometrics and Business Statistics Working Papers 28/14, Monash University, Department of Econometrics and Business Statistics.
    17. Liang, Hua, 2006. "Estimation in partially linear models and numerical comparisons," Computational Statistics & Data Analysis, Elsevier, vol. 50(3), pages 675-687, February.
    18. Roger D. Peng & Francesca Dominici & Thomas A. Louis, 2006. "Model choice in time series studies of air pollution and mortality," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(2), pages 179-203, March.
    19. Ibacache-Pulgar, Germán & Paula, Gilberto A., 2011. "Local influence for Student-t partially linear models," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1462-1478, March.
    20. Gao, Jiti, 1994. "Asymptotic theory for partly linear models," MPRA Paper 40452, University Library of Munich, Germany, revised 02 Dec 1994.
    21. Christoph Engel, 2016. "Experimental Criminal Law. A Survey of Contributions from Law, Economics and Criminology," Discussion Paper Series of the Max Planck Institute for Research on Collective Goods 2016_07, Max Planck Institute for Research on Collective Goods.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:55:y:1999:i:3:p:699-703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.