IDEAS home Printed from https://ideas.repec.org/p/amz/wpaper/2022-05.html
   My bibliography  Save this paper

Black-box Bayesian inference for economic agent-based models

Author

Listed:
  • Farmer, J. Doyne
  • Dyer, Joel
  • Cannon, Patrick
  • Schmon, Sebastian

Abstract

Simulation models, in particular agent-based models, are gaining popularity in economics. The considerable flexibility they offer, as well as their capacity to reproduce a variety of empirically observed behaviors of complex systems, give them broad appeal, and the increasing availability of cheap computing power has made their use feasible. Yet a widespread adoption in real-world modelling and decision-making scenarios has been hindered by the difficulty of performing parameter estimation for such models. In general, simulation models lack a tractable likelihood function, which precludes a straightforward application of standard statistical inference techniques. A number of recent works (Grazzini et al., 2017; Platt, 2020, 2021) have sought to address this problem through the application of likelihood-free inference techniques, in which parameter estimates are determined by performing some form of comparison between the observed data and simulation output. However, these approaches are (a) founded on restrictive assumptions, and/or (b) typically require many hundreds of thousands of simulations. These qualities make them unsuitable for large-scale simulations in economics and can cast doubt on the validity of these inference methods in such scenarios. In this paper, we investigate the efficacy of two classes of simulation-efficient black-box approximate Bayesian inference methods that have recently drawn significant attention within the probabilistic machine learning community: neural posterior estimation and neural density ratio estimation. We present a number of benchmarking experiments in which we demonstrate that neural network based black-box methods provide state of the art parameter inference for economic simulation models, and crucially are compatible with generic multivariate time-series data. In addition, we suggest appropriate assessment criteria for use in future benchmarking of approximate Bayesian inference procedures for economic simulation models.

Suggested Citation

  • Farmer, J. Doyne & Dyer, Joel & Cannon, Patrick & Schmon, Sebastian, 2022. "Black-box Bayesian inference for economic agent-based models," INET Oxford Working Papers 2022-05, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
  • Handle: RePEc:amz:wpaper:2022-05
    as

    Download full text from publisher

    File URL: https://www.inet.ox.ac.uk/files/SBI_for_ABMs.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Brock, William A. & Hommes, Cars H., 1998. "Heterogeneous beliefs and routes to chaos in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1235-1274, August.
    2. Mikael Sunnåker & Alberto Giovanni Busetto & Elina Numminen & Jukka Corander & Matthieu Foll & Christophe Dessimoz, 2013. "Approximate Bayesian Computation," PLOS Computational Biology, Public Library of Science, vol. 9(1), pages 1-10, January.
    3. Simon N. Wood, 2010. "Statistical inference for noisy nonlinear ecological dynamic systems," Nature, Nature, vol. 466(7310), pages 1102-1104, August.
    4. Shiono, Takashi, 2021. "Estimation of agent-based models using Bayesian deep learning approach of BayesFlow," Journal of Economic Dynamics and Control, Elsevier, vol. 125(C).
    5. Grazzini, Jakob & Richiardi, Matteo G. & Tsionas, Mike, 2017. "Bayesian estimation of agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 26-47.
    6. Franke, Reiner & Westerhoff, Frank, 2012. "Structural stochastic volatility in asset pricing dynamics: Estimation and model contest," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1193-1211.
    7. Kukacka, Jiri & Barunik, Jozef, 2017. "Estimation of financial agent-based models with simulated maximum likelihood," Journal of Economic Dynamics and Control, Elsevier, vol. 85(C), pages 21-45.
    8. Nick Malleson & Kevin Minors & Le-Minh Kieu & Jonathan A. Ward & Andrew West & Alison Heppenstall, 2020. "Simulating Crowds in Real Time with Agent-Based Modelling and a Particle Filter," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 23(3), pages 1-3.
    9. Lux, Thomas, 2018. "Estimation of agent-based models using sequential Monte Carlo methods," Journal of Economic Dynamics and Control, Elsevier, vol. 91(C), pages 391-408.
    10. Platt, Donovan, 2020. "A comparison of economic agent-based model calibration methods," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    11. Chris Sherlock & Alexandre H. Thiery & Anthony Lee, 2017. "Pseudo-marginal Metropolis–Hastings sampling using averages of unbiased estimators," Biometrika, Biometrika Trust, vol. 104(3), pages 727-734.
    12. Franke, Reiner, 2009. "Applying the method of simulated moments to estimate a small agent-based asset pricing model," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 804-815, December.
    13. Wilkinson Richard David, 2013. "Approximate Bayesian computation (ABC) gives exact results under the assumption of model error," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(2), pages 129-141, May.
    14. Espen Bernton & Pierre E. Jacob & Mathieu Gerber & Christian P. Robert, 2019. "Approximate Bayesian computation with the Wasserstein distance," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 235-269, April.
    15. S M Schmon & G Deligiannidis & A Doucet & M K Pitt, 2021. "Large-sample asymptotics of the pseudo-marginal method," Biometrika, Biometrika Trust, vol. 108(1), pages 37-51.
    16. A. Doucet & M. K. Pitt & G. Deligiannidis & R. Kohn, 2015. "Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator," Biometrika, Biometrika Trust, vol. 102(2), pages 295-313.
    17. Mark A. Beaumont & Jean-Marie Cornuet & Jean-Michel Marin & Christian P. Robert, 2009. "Adaptive approximate Bayesian computation," Biometrika, Biometrika Trust, vol. 96(4), pages 983-990.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kukacka, Jiri & Sacht, Stephen, 2023. "Estimation of heuristic switching in behavioral macroeconomic models," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    2. Aldo Glielmo & Marco Favorito & Debmallya Chanda & Domenico Delli Gatti, 2023. "Reinforcement Learning for Combining Search Methods in the Calibration of Economic ABMs," Papers 2302.11835, arXiv.org, revised Dec 2023.
    3. Vadim Grishchenko & Ivan Krylov, 2024. "New Approaches to Measuring, Analysing, and Forecasting Prices: A Review of the Bank of Russia, NES, and HSE University Workshop," Russian Journal of Money and Finance, Bank of Russia, vol. 83(2), pages 92-111, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dyer, Joel & Cannon, Patrick & Farmer, J. Doyne & Schmon, Sebastian M., 2024. "Black-box Bayesian inference for agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 161(C).
    2. Donovan Platt, 2022. "Bayesian Estimation of Economic Simulation Models Using Neural Networks," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 599-650, February.
    3. Tubbenhauer, Tobias & Fieberg, Christian & Poddig, Thorsten, 2021. "Multi-agent-based VaR forecasting," Journal of Economic Dynamics and Control, Elsevier, vol. 131(C).
    4. Kukacka, Jiri & Jang, Tae-Seok & Sacht, Stephen, 2018. "On the estimation of behavioral macroeconomic models via simulated maximum likelihood," Economics Working Papers 2018-11, Christian-Albrechts-University of Kiel, Department of Economics.
    5. Zila, Eric & Kukacka, Jiri, 2023. "Moment set selection for the SMM using simple machine learning," Journal of Economic Behavior & Organization, Elsevier, vol. 212(C), pages 366-391.
    6. Platt, Donovan, 2020. "A comparison of economic agent-based model calibration methods," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    7. Kukacka, Jiri & Sacht, Stephen, 2023. "Estimation of heuristic switching in behavioral macroeconomic models," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    8. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    9. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    10. repec:hal:spmain:info:hdl:2441/13thfd12aa8rmplfudlgvgahff is not listed on IDEAS
    11. repec:hal:spmain:info:hdl:2441/20hflp7eqn97boh50no50tv67n is not listed on IDEAS
    12. Kukacka, Jiri & Kristoufek, Ladislav, 2021. "Does parameterization affect the complexity of agent-based models?," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 324-356.
    13. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    14. Donovan Platt, 2019. "A Comparison of Economic Agent-Based Model Calibration Methods," Papers 1902.05938, arXiv.org.
    15. Delli Gatti, Domenico & Grazzini, Jakob, 2020. "Rising to the challenge: Bayesian estimation and forecasting techniques for macroeconomic Agent Based Models," Journal of Economic Behavior & Organization, Elsevier, vol. 178(C), pages 875-902.
    16. Barde, Sylvain, 2020. "Macroeconomic simulation comparison with a multivariate extension of the Markov information criterion," Journal of Economic Dynamics and Control, Elsevier, vol. 111(C).
    17. Lux, Thomas, 2020. "Bayesian estimation of agent-based models via adaptive particle Markov chain Monte Carlo," Economics Working Papers 2020-01, Christian-Albrechts-University of Kiel, Department of Economics.
    18. Emanuele Ciola & Edoardo Gaffeo & Mauro Gallegati, 2021. "Search for Profits and Business Fluctuations: How Banks' Behaviour Explain Cycles?," Working Papers 450, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    19. Kukacka, Jiri & Barunik, Jozef, 2017. "Estimation of financial agent-based models with simulated maximum likelihood," Journal of Economic Dynamics and Control, Elsevier, vol. 85(C), pages 21-45.
    20. Platt, Donovan & Gebbie, Tim, 2018. "Can agent-based models probe market microstructure?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1092-1106.
    21. Elizabeth Jane Casabianca & Alessia Lo Turco & Daniela Maggioni, 2021. "Migration And The Structure Of Manufacturing Production. A View From Italian Provinces," Working Papers 448, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    22. Gael M. Martin & David T. Frazier & Christian P. Robert, 2021. "Approximating Bayes in the 21st Century," Monash Econometrics and Business Statistics Working Papers 24/21, Monash University, Department of Econometrics and Business Statistics.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:amz:wpaper:2022-05. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: INET Oxford admin team (email available below). General contact details of provider: https://edirc.repec.org/data/inoxfuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.